42. Регрессионный анализ.
Регрессионный анализ – статистический метод установления формы и изучения связей между метрически зависимой переменной и одной или несколькими независимыми переменными.
Регрессионный анализ используется, если необходимо: уточнить действительно ли переменные взаимосвязаны, определить форму связи, предсказать значения зависимой переменной, определить в какой степени вариацию зависимой переменной можно объяснить независимыми переменными (теснота связи).
Парная регрессия – метод установления математической зависимости между 2 метрическими переменными. Этапы:
1) Построение поля корреляции (диаграммы рассеяния) – графического представления точек с координатами, определяемыми значениями 2-х переменных для всех наблюдений. Поле корреляции показывает, можно ли зависимость Y по X выразить прямой линией и, следовательно, подходит ли к этим данным парная регрессионная модель.
2) Формулирование модели. Модель парной регрессии где – точка пересечения прямой регрессии с 0У;– тангенс угла наклона прямой;– остаточный член связанный сi-тым наблюдением характеризующий отклонение от функции регрессии; X–независимая переменная (предиктор); – зависимая.
3) Вычисление параметров. В большинстве случаев и неизвестны, тогда их определяют исходя из имеющихся выборочных наблюдений с помощью уравнения -=a+bx, где a и b – вычисляемые оценки Во и Вi. B- нормированный коэфициент регресии, показывающий ожидаемое изменение Y при изменении Х на единицу. ,
4) Вычисление нормированного коэффициента регрессии (бета-коэфициента) – показывающего изменение Y в зависимости от изменения X (угол наклона прямой уравнения регрессии), при условии, что все данные нормированы. , Byx= ryx
5) Проверка значимости. Исследование гипотез Но (β1=0) и Н1 (β1≠0). , гдеSE – стандартная ошибка коэффициента регрессии (стандартное отклонение b).
6) Определение тесноты и значимости связи. Коэффициент детерминации (r2) - статистический показатель, характеризующий тесноту связи между метрическими переменными. В пределах от 0 до 1 – указывает на долю полной вариации, которая обусловлена вариацией Х. . SSy=SSрегрессии+SSошибки.SSy=,SSрегрессии=,SSошибки=. Проверка значимости r^2. Гипотезы: Н0: r^2=0; Н1:r^2>0. Проверка проводится путем определения F-статистики.
7) Проверка точности предсказаний. Чтобы оценить точность предсказанных значений Y полезно вычислить стандартную ошибку оценки уравнения регрессии SEE, которая представляет собой стандартное отклонение фактических значений Y от теоретических значений. При наличии k независимых переменных: SEE=. Предполагается, что можно ожидать, что примерно 2/3 точек данных будут находится на расстоянии не болееSEE выше или ниже регрессии. Ококло 95% значений данных должны находится на расстоянии не более чем 2х SEE от линии регрессии.
8) Анализ остатков. Остаток – разность между наблюдаемым значением Y и его теоретическим значением, предсказанным уравнением регрессии. Анализ производится для подтверждения того, что модель регрессии подходит для анализа, с этой целью используется графический метод.
9) Перекрестная проверка модели.
- 2.Объекты ми:
- 4. Система анализа информации представляет собой набор современных логических, эконом- математических и эконом- стат методик обработки информации:
- 5.Основные направления анализа полученной информации
- 6. Разработка маркетинговой стратегии:
- 5. Формулирование цели маркетингового исследования. Формирование рабочей гипотезы. Методы генерирования рабочих гипотез.
- 6. Разработка плана маркетингового исследования.
- 7. Сбор и анализ вторичной информации.
- 8. Анализ избранных случаев.
- 9. Метод фокус-групп: характеристика и этапы использования.
- 10. Глубинные интервью: характеристика и этапы использования.
- 11. Проекционные методы (пм) исследования: характеристика и этапы использования.
- 12. Общая характеристика выборочных методов.
- 13. Детерминированные и вероятностные методы расчета выборки.
- 14. Расчет размера и ошибки выборки в случае вероятностного метода отбора.
- 15. Методы проведения опроса. Этапы использования метода опроса.
- 16. Разработка анкеты. Формулировка и оценка вопросов. Выбор последоват. Вопросов. Тестирование анкеты и ее корректировка.
- 21.Концепция причинности в маркетинге. Причинно-следственные связи.
- 22.Этапы разработки и проведения эксперимента.
- 23.Обеспечение валидности экспериментов. Возможные угрозы валидности. Контроль факторов, снижающих валидность.
- 24.Классические модели эксперимента: предварительные модели.
- 25.Классические модели эксперимента: истинные модели.
- 26.Классические модели эксперимента: модели квазиэксперимента.
- 27.Статистические модели эксперимента.
- 28.Пробный маркетинг как вид контролируемого эксперимента.
- 29. Подготовка данных к анализу: редактирование и кодирование данных. Категориальная и дихотомическая кодировка.
- 30 Подготовка данных к анализу: составление базы данных, табулирование, корректировка.
- 31 Логические методы анализа: экспертный анализ, контент – анализ.
- 32 Построение частотных распределений. Показатели центра распределения.
- 33.Показатели вариации и формы распределения данных.
- 34.Этапы проверки гипотез о связях между переменными. Нулевая и альтернативная гипотезы. Статистический критерий. Уровень значимости. Критическая область.
- 35.Построение таблиц сопряженности признаков. Введение третьей переменной.
- 36. Показатели оценки статистической значимости и тесноты связи переменных, включенных в состав таблицы сопряженности.
- 40. Многофакторный дисперсионный анализ. Ковариационный анализ.
- 40.Ковариационный анализ.
- 41. Корреляционный анализ.
- 42. Регрессионный анализ.
- 43. Множественный регрессионный анализ. Нелинейная регрессия.
- 44. Метод пошаговой регрессии. Проблема мультиколлинеарности.
- 45. Оценка регрессионной модели. Проверка адекватности модели регрессии.
- 46. Дискриминантный анализ (да): цели, этапы выполнения
- 48. Кластерный анализ (ка): суть метода, этапы выполнения анализа, вращение факторов.
- 49. Многомерное шкалирование (мш) и совместный анализ (са)
- 50. Международные маркетинговые исследования.
- 51.Отчет о маркетинговом исследовании. Презентация отчета. Поддержка клиента и оценка эффективности проекта.
- 1. Подготовка отчета.
- 17. Измерение и шкалирование. Типы шкал
- 18. Методы сравнительного и несравнительного шкалирования
- 19. Этапы использования метода наблюдения. Оценка надежности наблюдения
- 20. Полевые работы