4.2.3 Дробный факторный эксперимент
При большом числе учитываемых в эксперименте факторов ПФЭ становится громоздким, затратным и требует большое время для своего проведения, так как число опытов с ростом k увеличивается по экспоненте, см. выше. Число опытов можно сократить, если априори известно, что на процесс не оказывают влияния те или иные взаимодействия; действительно, в реальной ситуации некоторые взаимодействия факторов особенно высокого порядка (т. е. включающих большое число символов) не влияют на выходной параметр. В этом случае можно использовать так называемые дробные реплики от ПФЭ или дробный факторный эксперимент (ДФЭ).
Предположим, что необходимо получить математическое описание процесса при трех учитываемых факторах Х1, Х2 и Х3 оказывающих влияние на функцию отклика У.
При использовании ПФЭ для определения коэффициентов полинома 1-го порядка необходимо провести восемь опытов (23) в соответствии с матрицей планирования, приведенной в табл. 4.2. Число номеров опытов должно быть не менее числа коэффициентов полинома, в соответствии с которым планируется эксперимент. В данном случае предполагаемая математическая модель, описывающая исследуемый процесс, имеет вид полинома (4.4), содержащего восемь коэффициентов. Однако, если взаимодействие между факторами Х1, Х2 и Х3 отсутствует, можно ограничиться четырьмя опытами. В этом случае можно воспользоваться матрицей планирования ПФЭ для двух факторов Х1 и Х2 приведенной в табл. 4.1, заменив в ней обозначение х1бх2б на х3б, соответствующее безразмерному значению фактора Хъ на верхнем и нижнем его уровнях. Чередование знаков в этом столбце соответствует результату перемножения безразмерных значений двух других факторов (Х1 и Х2), т. е. остается неизменным после замены символов в матрице планирования, которая после введения в нее третьего фактора остается ортогональной. Эксперимент в этом случае будет ставиться уже с включением третьего фактора, изменяющегося согласно столбцу х1бх2б ПФЭ (табл. 4.1), а предполагаемая математическая модель будет иметь вид полинома 1-го порядка, не учитывающего взаимодействия факторов, т. е.
, (4.9)
Такой сокращенный план содержит половину опытов от требуемого их числа 2k согласно плану ПФЭ (в нашем случае четыре опыта вместо восьми) и называется полурепликой от ПФЭ типа 2k. Условное обозначение такого плана: ДФЭ типа 2k-1, где k - число учитываемых в эксперименте факторов; 1 число взаимодействий, замененных факторами, учитываемых в эксперименте. Для рассматриваемого случая трех факторов Х1 Х2 Х3 матрица планирования ДФЭ типа 23-1будет иметь вид, представленный в таблице….
Таблица … Матрица планирования ДФЭ типа 23-1
Приведенное планирование эксперимента дает возможность при обработке и анализе его результатов оценить в полиноме (4.9) свободный член Ьо и коэффициенты при линейных членах Ьь Ь2 и Ь3. Но при этом предполагается, что полностью отсутствует или пренебрежительно мало влияние на функцию отклика эффектов взаимодействия факторов исследуемого процесса. Только в этом случае математическая модель, представленная полиномом, в котором отсутствуют члены, учитывающие эти взаимодействия (так как соответствующие им коэффициенты равны нулю), может быть адекватна исследуемому процессу.
При использовании матрицы планирования ДФЭ нужно всегда помнить, что мы получаем совместную оценку нескольких эффектов: факторов и их взаимодействий. Действительно,
(4.10)
Поэтому подсчитываемые в дальнейшем (см. гл. 5) значения линейных коэффициентов Ь1, Ь2 и Ь3 полинома по экспериментальным значениям функции отклика будут всегда включать также значения коэффициентов, учитывающих эффект влияния взаимодействия факторов на функцию отклика. В результате этого подсчитанные значения коэффициентов полинома (4.9) фактически будут иметь следующий вид:
(4.11)
где b1 b2 и Ь3 - значения линейных коэффициентов полинома (4.9); а ь' - полученные их значения при наличии эффекта взаимодействия факторов на функцию отклика.
Часто имеет смысл начинать исследования с ДФЭ. Если у исследователя появились сомнения в том, что какие-то взаимодействия, ранее не включенные в план эксперимента, могут влиять на выходной параметр, он всегда имеет возможность расширить матрицу планирования до ДФЭ меньшей дробности или ПФЭ и найти раздельную оценку интересующих его эффектов.
- Методология исследования, моделирования и совершенствования производственных процессов
- Оглавление
- Глава 1 Общие сведения о методологии научного познания……………….6
- Глава 2 Моделирование как метод научного познания………………………11
- Глава 3 Исследование взаимосвязи случайных величин…………….22
- Глава 4 Способы экспериментальных исследований…………………88
- Глава 5 Некоторые современные достижения интеллектуальных информационных систем и программных средств в области анализа связи величин
- Введение
- Глава 1. Общие сведения о методологии научного познания
- 3. Статистический.
- 7. Экспериментальный.
- Глава 2 Моделирование как метод научного познания
- 2.1 Этапы построения, свойства, цели и классификация моделей
- 2.2 Концепции и инструменты оптимизации математических моделей
- 2.3 Принципы анализа математических моделей
- Глава 3. Исследование взаимосвязи случайных величин
- 3.1 Основные представления о корреляционном, дисперсионном и регрессионном анализах
- 3.2 Корреляционный анализ
- 3.2.1 Обзор характеристик «тесноты» связи
- 3.2.2. Формулы расчёта основных характеристик связи
- 3.2.3. Области определения и способы оценки достоверности коэффициентов связи случайных величин
- 3.2.4 Методы корреляции порядковых (ординальных) и номинальных (категориальных) переменных
- 3.2.5 Функции и инструменты ms excel, предназначенные для расчёта коэффициентов ковариации, корреляции и детерминации
- 3.3 Дисперсионный анализ
- 3.3.1. Виды классического дисперсионного анализа
- 3.3.2. Инструменты программы ms excel, предназначенные для дисперсионного анализа
- 3.3.2.1. «Однофакторный дисперсионный анализ»
- 3.3.2.2. «Двухфакторный дисперсионный анализ без повторений»
- 3.3.2.3. «Двухфакторный дисперсионный анализ с повторениями»
- 3.3.3. Представление о ступенчатом дисперсионном анализе
- 3.4 К установлению математической модели связи случайных величин
- 3.4.1. Виды регрессионных моделей
- 3.4.2. Способы, принципы и признаки оптимизации регрессии
- 3.4.3 Опции программы ms excel, предназначенные для регрессионного анализа
- 3.4.3.1 Использование инструмента анализа «Регрессия»
- 3.4.3.2 Функции excel, связанные с инструментом «Регрессия»
- 3.4.3.3 Возможности использования графических опций программы ms excel для решения задач регрессионного анализа
- Глава 4 Способы экспериментальных исследований
- 4.1 Пассивный эксперимент
- 4.1.1 Методы анализа результатов пассивного эксперимента
- 4.1.2. Информативность результатов пассивного производственного эксперимента
- 4.2 Планирование эксперимента и методы оптимизации параметров процесса
- 4.2.1 Методология планирования эксперимента
- 4.2.2 Полный факторный эксперимент
- 4.2.3 Дробный факторный эксперимент
- 4.2.4. Центральные композиционные планы
- 4.3 Оптимизация работы объекта управления для одного и нескольких параметров оптимизации для одно- и многоэкстремальной поверхности отклика
- 4. 4 Алгоритмы решения задач установления функциональных зависимостей и оптимизации
- Глава 6
- Глава 7
- Глава 8
- Глава 9 Современные достижения в области промышленной статистики и новые программные средства их реализации.