3.2.5 Функции и инструменты ms excel, предназначенные для расчёта коэффициентов ковариации, корреляции и детерминации
Наиболее важные и часто употребляемые аналитические характеристики достаточно просто определяются в рамках программы MS EXCEL. Так сходные по своим аргументам функции КОВАР и КОРРЕЛ (последняя представлена на рис. 2.3) определяют соответственно коэффициенты ковариации и корреляции по формулам (2.1) и (2.3). Для этого достаточно вставить массивы переменных и нажать ОК. Ту же задачу, что и функция КОРРЕЛ (имея те же аргументы), решает функция ПИРСОН. Коэффициент парной линейной корреляции Пирсона в данном случае определяется по формуле (2.3), соответствующей для случая выборочных совокупностей и формуле (2.4). Таким образом, для выборок результаты расчётов по формулам КОРРЕЛ и ПИРСОН совпадают.
Рис. 2.3. Аргументы функции КОРРЕЛ
В MS EXCEL имеются также инструменты анализа «Ковариация» и «Корреляция», сходные своими диалоговыми окнами (последнее представлено на рис. 2.4). Они служат той же цели, что и соответствующие функции, но в отличие от функций в данном случае задаётся общий входной интервал с разделением анализируемых переменных по строкам или столбцам. При этом коэффициенты корреляции (или ковариации) рассчитываются для всех сочетаний задаваемых строк или столбцов. Таким образом, формируется так называемая «матрица корреляций» (или аналогично - «матрица ковариаций»).
В инструментах анализа имеется возможность выбора места выходного диапазона (рис. 2.4). При выводе результатов на текущий лист («Выходной интервал») введённая ссылка на ячейку указывает левую верхнюю ячейку выходного диапазона.
Рис. 2.4. Диалоговое окно инструмента анализа «Корреляция»
Статистическая функция КВПИРСОН (рис. 2.5) позволяет определять квадрат коэффициента Пирсона r2 для парной линейной зависимости. Он представляет собой коэффициент детерминации для такого рода зависимости. Практическое использование коэффициента детерминации, показывающего степень аппроксимации экспериментальных точек аналитической зависимостью, особенно эффективно, когда эти аналитические зависимости можно оперативно изменять. Тогда появляется возможность выбрать такую зависимость, для которой установлен максимальный коэффициент детерминации. Эти возможности открываются при использовании графических опций MS EXCEL (глава 5).
Рис. 2.5. Аргументы функции КВПИРСОН
- Методология исследования, моделирования и совершенствования производственных процессов
- Оглавление
- Глава 1 Общие сведения о методологии научного познания……………….6
- Глава 2 Моделирование как метод научного познания………………………11
- Глава 3 Исследование взаимосвязи случайных величин…………….22
- Глава 4 Способы экспериментальных исследований…………………88
- Глава 5 Некоторые современные достижения интеллектуальных информационных систем и программных средств в области анализа связи величин
- Введение
- Глава 1. Общие сведения о методологии научного познания
- 3. Статистический.
- 7. Экспериментальный.
- Глава 2 Моделирование как метод научного познания
- 2.1 Этапы построения, свойства, цели и классификация моделей
- 2.2 Концепции и инструменты оптимизации математических моделей
- 2.3 Принципы анализа математических моделей
- Глава 3. Исследование взаимосвязи случайных величин
- 3.1 Основные представления о корреляционном, дисперсионном и регрессионном анализах
- 3.2 Корреляционный анализ
- 3.2.1 Обзор характеристик «тесноты» связи
- 3.2.2. Формулы расчёта основных характеристик связи
- 3.2.3. Области определения и способы оценки достоверности коэффициентов связи случайных величин
- 3.2.4 Методы корреляции порядковых (ординальных) и номинальных (категориальных) переменных
- 3.2.5 Функции и инструменты ms excel, предназначенные для расчёта коэффициентов ковариации, корреляции и детерминации
- 3.3 Дисперсионный анализ
- 3.3.1. Виды классического дисперсионного анализа
- 3.3.2. Инструменты программы ms excel, предназначенные для дисперсионного анализа
- 3.3.2.1. «Однофакторный дисперсионный анализ»
- 3.3.2.2. «Двухфакторный дисперсионный анализ без повторений»
- 3.3.2.3. «Двухфакторный дисперсионный анализ с повторениями»
- 3.3.3. Представление о ступенчатом дисперсионном анализе
- 3.4 К установлению математической модели связи случайных величин
- 3.4.1. Виды регрессионных моделей
- 3.4.2. Способы, принципы и признаки оптимизации регрессии
- 3.4.3 Опции программы ms excel, предназначенные для регрессионного анализа
- 3.4.3.1 Использование инструмента анализа «Регрессия»
- 3.4.3.2 Функции excel, связанные с инструментом «Регрессия»
- 3.4.3.3 Возможности использования графических опций программы ms excel для решения задач регрессионного анализа
- Глава 4 Способы экспериментальных исследований
- 4.1 Пассивный эксперимент
- 4.1.1 Методы анализа результатов пассивного эксперимента
- 4.1.2. Информативность результатов пассивного производственного эксперимента
- 4.2 Планирование эксперимента и методы оптимизации параметров процесса
- 4.2.1 Методология планирования эксперимента
- 4.2.2 Полный факторный эксперимент
- 4.2.3 Дробный факторный эксперимент
- 4.2.4. Центральные композиционные планы
- 4.3 Оптимизация работы объекта управления для одного и нескольких параметров оптимизации для одно- и многоэкстремальной поверхности отклика
- 4. 4 Алгоритмы решения задач установления функциональных зависимостей и оптимизации
- Глава 6
- Глава 7
- Глава 8
- Глава 9 Современные достижения в области промышленной статистики и новые программные средства их реализации.