3.3. Оценивание параметров структурной модели
Коэффициенты структурной модели могут быть оценены равными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение получили два метода оценивания коэффициентов структурной модели: косвенный МНК и двухшаговый МНК.
Косвенный МНК(КМНК) применим в случае точно идентифицируемой структурной модели. Процедура следующая:
1. Структурная модель преобразуется в приведенную форму.
2. Для каждого уравнения приведенной формы обычным МНК оцениваются коэффициенты δij
3. Коэффициенты приведенной модели трансформируются в параметры структурной модели.
Рассмотрим применение КМНК для модели:
Для построения модели имеем таблицу:
№ п/п | y1 | y2 | x1 | x2 |
1 | 2 | 5 | 1 | 3 |
2 | 3 | 6 | 2 | 1 |
3 | 4 | 7 | 3 | 2 |
4 | 5 | 8 | 2 | 5 |
5 | 6 | 5 | 4 | 6 |
Средние | 4 | 6,2 | 2,4 | 3,4 |
Приведенная форма модели имеет вид:
где и1, и2—случайные ошибки приведенной формы модели.
Для каждого уравнения приведенной формы применим традиционный МНК и определим
δ - коэффициенты. Для простоты работаем в отклонениях, т.е., .Тогда система нормальных уравнений для первого уравнения системы составит:
Для приведенных данных система составит:
Отсюда получаем первое уравнение ( и аналогично второе):
Перейдем к структурной форме следующим образом: исключим из первого уравнения приведенной формы х2, выразив его из второго уравнения приведенной формы и подставив в первое уравнение:
Первое уравнение структурной формы:
Аналогично исключим из второго уравнения x1выразив его через первое уравнение и подставив во второе:
- второе уравнение структурной формы.
Структурная форма модели имеет вид:
Эту же систему можно записать, включив в нее свободный член уравнения, т.е. перейти от переменных в виде отклонений от среднего к исходным переменным yиx:
Тогда структурная модель имеет вид:
Если к каждому уравнению структурной формы применить традиционный МНК, то результаты могут сильно отличаться. В данном примере будет:
Двухшаговый МНК. ДМНК используется для сверхидентифицируемых систем. Основная идея ДМНК: на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Здесь дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменнойи на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных.
Сверхидентифицируемая структурная модель может быть двух типов:
- все уравнения системы сверхидентифицируемые;
- система содержит также точно идентифицируемые уравнения.
В первом случае для оценки структурных коэффициентов каждого уравнения используется ДМНК. Во втором случае структурные коэффициенты для точно идентифицируемых уравнений находятся из системы приведенных уравнений.
Рассмотрим модель:
Она получена из предыдущего примера наложением ограничения b12=a11 Поэтому первое уравнение стало сверхидентифицируемым.
На первом шаге найдем приведенную форму модели. С использованием тех же исходных данных получим систему:
На основе второго уравнения этой системы можно найти теоретические значения для эндогенной переменной y2, т.е. Подставим в это уравнение значениях1их2 в форме отклонений от средних значений, запишем в виде таблицы:
x1 | x2 | y1 | y1 z | z | ||
-1.4 | -0.4 | 0.103 | -1.297 | -2 | 2.594 | 1.682 |
-0.4 | -2.4 | 0.042 | -0.358 | -1 | 0.358 | 0.128 |
0.6 | -1.4 | -0.035 | 0.565 | 0 | 0 | 0.319 |
-0.4 | 1.6 | 0.02 | -0.38 | 1 | -0.38 | 0.144 |
1.6 | 2.6 | -0.13 | 1.47 | 2 | 2.94 | 2.161 |
0 | 0 | 0 | 0 | 0 | 5.512 | 4.434 |
После того, как найдены оценки заменим в уравненииy1=b12(y2+x1)фактические значенияу2их оценкаминайдем значения новой переменной . Применим МПК к уравнению:
y1=b12 z.
Получим:
В целом рассматриваемая система будет иметь вид:
Второе уравнение не изменилось по сравнению с предыдущим примером.
ДМНК является наиболее общим и широко распространенным методом решения системы одновременных уравнений. Для точно идентифицируемых уравнений ДМНК дает тот же результат, что и КМНК.
- Isbn 5-8399-0094-х
- Содержание
- Введение
- Парная регрессия
- 1.1. Спецификация модели
- 1.2. Оценка параметров линейной регрессии
- 1.3. Предпосылки мнк (условия Гаусса-Маркова)
- 1.4. Оценка существенности параметров линейной регрессии и корреляции
- 1.5. Интервалы прогноза по линейному уравнению регрессии
- 1.6. Нелинейная регрессия
- 11. Модель множественной регрессии
- 2.1. Оценка параметров линейного уравнения множественной регрессии
- 2.2 Частные уравнения регрессии
- 2.3. Анализ качества эмпирического уравнения множественной линейной регрессии
- 2.4. Спецификация модели
- 2.5. Гетероскедастичность
- 2.6. Автокорреляция остатков
- 2.7. Фиктивные переменные в регрессионных моделях
- III. Системы эконометрических уравнений
- 3.1. Структурная и приведенная формы модели
- 3.2. Проблема идентификации
- 3.3. Оценивание параметров структурной модели
- 3.4. Применение систем эконометрических уравнений |
- IV. Временные ряды в эконометрических исследованиях
- 4.1. Выявление структуры временного ряда
- 4.2. Динамические эконометрические модели
- Список учебной литературы