4. Правила побудови двоїстих задач.
Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею. Для побудови двоїстої задачі необхідно звести пряму задачу до стандартного виду. Вважають, що задача лінійного програмування подана у стандартному вигляді, якщо для відшукання максимального значення цільової функції всі нерівності її системи обмежень приведені до виду «≤», а для задачі на відшукання мінімального значення — до виду «».
Якщо пряма задача лінійного програмування подана в стандартному вигляді, то двоїста задача утворюється за такими правилами:
1. Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.
2. Кожній змінній прямої задачі відповідає обмеження двоїстої задачі, причому кількість обмежень двоїстої задачі дорівнює кількості невідомих прямої задачі.
3. Якщо цільова функція прямої задачі задається на пошук найбільшого значення (max), то цільова функція двоїстої задачі — на визначення найменшого значення (min), і навпаки.
4. Коефіцієнтами при змінних у цільовій функції двоїстої задачі є вільні члени системи обмежень прямої задачі.
5. Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних у цільовій функції прямої задачі.
6. Матриця
,
що складається з коефіцієнтів при змінних у системі обмежень прямої задачі, і матриця коефіцієнтів у системі обмежень двоїстої задачі
утворюються одна з одної транспонуванням, тобто заміною рядків стовпчиками, а стовпчиків — рядками.
Процес побудови двоїстої задачі зручно зобразити схематично:
Рис. 3.1. Схема побудови двоїстої задачі до прямої
Пари задач лінійного програмування бувають симетричні та несиметричні.
У симетричних задачах обмеження прямої та двоїстої задач є лише нерівностями, а змінні обох задач можуть набувати лише невід’ємних значень.
У несиметричних задачах деякі обмеження прямої задачі можуть бути рівняннями, а двоїстої — лише нерівностями. У цьому разі відповідні рівнянням змінні двоїстої задачі можуть набувати будь-яких значень, не обмежених знаком.
Всі можливі форми прямих задач лінійного програмування та відповідні їм варіанти моделей двоїстих задач у матричній формі наведено нижче.
Симетричні задачі
Пряма задача Двоїста задача
max F = CX min Z = BY AX ≤ B ATY C X 0 Y 0 |
min F = CX max Z = BY AX B ATY ≤ C X 0 Y 0 |
Ст 107
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.
- 3. Двоїстість у лінійному програмуванні. Економічний зміст двоїстих оцінок.
- 4. Правила побудови двоїстих задач.
- 5. Геометрична інтерпретація задачі лінійного програмування.
- 6. Означення економетричної моделі.
- 7. Метод множників Лагранжа розв'язування нелінійних задач оптимізації.
- 8. Симплексний метод зі штучним базисом. Ознака оптимальності плану зі штучним базисом.
- 9. Етапи побудови економетричної моделі.
- 10. Довірчі інтервали значень парної лінійної функції регресії із заданою надійністю .
- 11 .Довірчі інтервали параметрів парної лінійної функції регресії із заданою надійністю .
- 12. Довірчі інтервали прогнозного значення парної лінійної функції регресії із заданою надійністю .
- 13. Алгоритм графічного методу розв'язування задач лінійного програмування.
- 14. Перша основна теорема двоїстості.
- 15. Друга основна теорема двоїстості.
- 16. Третя основна теорема двоїстості.
- 17. Довірчі інтервали для прогнозного значення Yp загальної лінійної економетричної моделі із заданою надійністю .
- 18. Оператор оцінювання 1мнк.
- 19. Економічна та математична постановка задачі дрібно-лінійного програмування.
- 20. Графічний метод розв'язування задач дрібно лінійного програмування.
- 21 .Алгоритм симплексного методу для задач лінійного програмування.
- 22. Метод розв'язування задачі дрібно лінійного програмування у загальному вигляді.
- 27. Постановка транспортної задачі.
- 28. Методи розв'язання транспортної задачі.
- 29. Методи знаходження початкового опорного плану транспортної задачі.
- 30. Порівняльна характеристика задач лінійного і нелінійного програмування.
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.