15. Друга основна теорема двоїстості.
Теорема (друга теорема двоїстості для симетричних задач).
Для того, щоб плани X* та Y* відповідних спряжених задач були оптимальними, необхідно і достатньо, щоб виконувалися умови доповнюючої нежорсткості:
Наслідок. Якщо в результаті підстановки оптимального плану однієї із задач (прямої чи двоїстої) в систему обмежень цієї задачі і-те обмеження виконується як строга нерівність, то відповідна і-та компонента оптимального плану спряженої задачі дорівнює нулю.
Якщо і-та компонента оптимального плану однієї із задач додатна, то відповідне і-те обмеження спряженої задачі виконується для оптимального плану як рівність.
Економічний зміст другої теореми двоїстості стосовно оптимального плану Х* прямої задачі. Якщо для виготовлення всієї продукції в обсязі, що визначається оптимальним планом Х*, витрати одного і-го ресурсу строго менші, ніж його загальний обсяг , то відповідна оцінка такого ресурсу (компонента оптимального плану двоїстої задачі) буде дорівнювати нулю, тобто такий ресурс за даних умов для виробництва не є «цінним».
Якщо ж витрати ресурсу дорівнюють його наявному обсягові , тобто його використано повністю, то він є «цінним» для виробництва, і його оцінка буде строго більшою від нуля.
Економічне тлумачення другої теореми двоїстості щодо оптимального плану Y* двоїстої задачі: у разі, коли деяке j-те обмеження виконується як нерівність, тобто всі витрати на виробництво одиниці j-го виду продукції перевищують її ціну сj, виробництво такого виду продукції є недоцільним, і в оптимальному плані прямої задачі обсяг такої продукції дорівнює нулю.
Якщо витрати на виробництво j-го виду продукції дорівнюють ціні одиниці продукції , то її необхідно виготовляти в обсязі, який визначає оптимальний план прямої задачі .
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.
- 3. Двоїстість у лінійному програмуванні. Економічний зміст двоїстих оцінок.
- 4. Правила побудови двоїстих задач.
- 5. Геометрична інтерпретація задачі лінійного програмування.
- 6. Означення економетричної моделі.
- 7. Метод множників Лагранжа розв'язування нелінійних задач оптимізації.
- 8. Симплексний метод зі штучним базисом. Ознака оптимальності плану зі штучним базисом.
- 9. Етапи побудови економетричної моделі.
- 10. Довірчі інтервали значень парної лінійної функції регресії із заданою надійністю .
- 11 .Довірчі інтервали параметрів парної лінійної функції регресії із заданою надійністю .
- 12. Довірчі інтервали прогнозного значення парної лінійної функції регресії із заданою надійністю .
- 13. Алгоритм графічного методу розв'язування задач лінійного програмування.
- 14. Перша основна теорема двоїстості.
- 15. Друга основна теорема двоїстості.
- 16. Третя основна теорема двоїстості.
- 17. Довірчі інтервали для прогнозного значення Yp загальної лінійної економетричної моделі із заданою надійністю .
- 18. Оператор оцінювання 1мнк.
- 19. Економічна та математична постановка задачі дрібно-лінійного програмування.
- 20. Графічний метод розв'язування задач дрібно лінійного програмування.
- 21 .Алгоритм симплексного методу для задач лінійного програмування.
- 22. Метод розв'язування задачі дрібно лінійного програмування у загальному вигляді.
- 27. Постановка транспортної задачі.
- 28. Методи розв'язання транспортної задачі.
- 29. Методи знаходження початкового опорного плану транспортної задачі.
- 30. Порівняльна характеристика задач лінійного і нелінійного програмування.
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.