19. Економічна та математична постановка задачі дрібно-лінійного програмування.
Розв’язуючи економічні задачі, часто як критерії оптимальності беруть рівень рентабельності, продуктивність праці тощо. Ці показники математично виражаються дробово-лінійними функціями.
Деяке виробництво планує виробляти N-видів продукція. При цьому використовує «m» видів ресурсів, обсяги яких = bi, i=1,m.
Технологічна матриця aij, i=1,n та j=1,m. Відомі ціни Cj – одиниці j-го виду продукції.
Відомі витрати dj – j-го виду продукції.
С1х1 + С2х2 +…+ сnxn – прибуток виробництва
d1x1 + d2x2 +…+dnxn - витрати виробництва
Тоді, z = прибуток / витрати – це рентабельність виробництва (1)
Обмеження, які описуються виробничий процес:
a11x1 + a12x2 +…+ a1nxn <= b1 (2)
a21x1 + a22x2 +…+a2nxn <= b2
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
am1x1 + am2x2 +…+ amnxn <= bm
X > = 0, j = 1,n
Знайти: такий оптимальний план випуску продукції, щоб рентабельність від виробництва була Мах.
Математична постановка задачі (1-2). Задача (1-2) – є задачею дрябно-лінійного програмування.
Загальна постановак задачі. Знайти Мах. і Min. значення функції при обмеженнях:
.(3)
Передбачається, що знаменник цільової функції в області допустимих розв’язків системи обмежень не дорівнює нулю.
Очевидно, що задача (1-3) відрізняється від звичайної задачі лінійного програмування лише цільовою функцією, що дає змогу застосовувати для її розв’язування за певного модифікування вже відомі методи розв’язання задач лінійного програмування.
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.
- 3. Двоїстість у лінійному програмуванні. Економічний зміст двоїстих оцінок.
- 4. Правила побудови двоїстих задач.
- 5. Геометрична інтерпретація задачі лінійного програмування.
- 6. Означення економетричної моделі.
- 7. Метод множників Лагранжа розв'язування нелінійних задач оптимізації.
- 8. Симплексний метод зі штучним базисом. Ознака оптимальності плану зі штучним базисом.
- 9. Етапи побудови економетричної моделі.
- 10. Довірчі інтервали значень парної лінійної функції регресії із заданою надійністю .
- 11 .Довірчі інтервали параметрів парної лінійної функції регресії із заданою надійністю .
- 12. Довірчі інтервали прогнозного значення парної лінійної функції регресії із заданою надійністю .
- 13. Алгоритм графічного методу розв'язування задач лінійного програмування.
- 14. Перша основна теорема двоїстості.
- 15. Друга основна теорема двоїстості.
- 16. Третя основна теорема двоїстості.
- 17. Довірчі інтервали для прогнозного значення Yp загальної лінійної економетричної моделі із заданою надійністю .
- 18. Оператор оцінювання 1мнк.
- 19. Економічна та математична постановка задачі дрібно-лінійного програмування.
- 20. Графічний метод розв'язування задач дрібно лінійного програмування.
- 21 .Алгоритм симплексного методу для задач лінійного програмування.
- 22. Метод розв'язування задачі дрібно лінійного програмування у загальному вигляді.
- 27. Постановка транспортної задачі.
- 28. Методи розв'язання транспортної задачі.
- 29. Методи знаходження початкового опорного плану транспортної задачі.
- 30. Порівняльна характеристика задач лінійного і нелінійного програмування.
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.