12. Довірчі інтервали прогнозного значення парної лінійної функції регресії із заданою надійністю .
Моделі лінійної регресії знайшли найбільш широке використання в економічних дослідженнях, хоча це і є спрощений засіб в моделюванні реальних економічних процесів. Але ґрунтовне вивчення і застосування методики побудови лінійних моделей, надає необхідну теоретичну базу для створення більш складних, нелінійних моделей, що будуть значно більше відповідати реальним економічним процесам. Крім цього, з практики побудови і досліджені парної лінійної моделі створюються необхідні передумови для економетричного аналізу.
Якщо в рівняння включено лише одну пояснюючу змінну, то одержуємо теоретичну модель, яка дістала назву парної лінійної регресії:
yі = β0 + β1xi + i .
У загальному випадку парна лінійна регресія є лінійною функцією між залежною змінною Y і однією пояснюючою змінною X:
Y = a0 + a1 X.
Співвідношення (2.1) називається теоретичною лінійною регресійною моделлю; а0 і а1 – теоретичні параметри (теоретичні коефіцієнти) регресії.
Прогнозування середнього значення залежної змінної.
Довірчий інтервал для теоретичної функції регресії знаходимо за формулою:
де табличне значення розподілу Стьюдента з надійністю і ступенем вільності , а визначається за формулою:
= .
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.
- 3. Двоїстість у лінійному програмуванні. Економічний зміст двоїстих оцінок.
- 4. Правила побудови двоїстих задач.
- 5. Геометрична інтерпретація задачі лінійного програмування.
- 6. Означення економетричної моделі.
- 7. Метод множників Лагранжа розв'язування нелінійних задач оптимізації.
- 8. Симплексний метод зі штучним базисом. Ознака оптимальності плану зі штучним базисом.
- 9. Етапи побудови економетричної моделі.
- 10. Довірчі інтервали значень парної лінійної функції регресії із заданою надійністю .
- 11 .Довірчі інтервали параметрів парної лінійної функції регресії із заданою надійністю .
- 12. Довірчі інтервали прогнозного значення парної лінійної функції регресії із заданою надійністю .
- 13. Алгоритм графічного методу розв'язування задач лінійного програмування.
- 14. Перша основна теорема двоїстості.
- 15. Друга основна теорема двоїстості.
- 16. Третя основна теорема двоїстості.
- 17. Довірчі інтервали для прогнозного значення Yp загальної лінійної економетричної моделі із заданою надійністю .
- 18. Оператор оцінювання 1мнк.
- 19. Економічна та математична постановка задачі дрібно-лінійного програмування.
- 20. Графічний метод розв'язування задач дрібно лінійного програмування.
- 21 .Алгоритм симплексного методу для задач лінійного програмування.
- 22. Метод розв'язування задачі дрібно лінійного програмування у загальному вигляді.
- 27. Постановка транспортної задачі.
- 28. Методи розв'язання транспортної задачі.
- 29. Методи знаходження початкового опорного плану транспортної задачі.
- 30. Порівняльна характеристика задач лінійного і нелінійного програмування.
- 1. Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- 2. Завдання економетричного дослідження.