4.1. Нахождение оценок неизвестных параметров
Для нахождения неизвестных параметров множественной регрессии используется метод наименьших квадратов (МНК), минимизирующий отклонения результирующего признака у от теоретического (полученного из модели), то есть
(4.1.1)
При этом должны выполняться условия Гаусса – Маркова:
1.E( )=0, E( )=V( )= – не зависит от j, j=1…n.
Математическое ожидание ошибок равно нулю, дисперсия ошибок постоянна и не зависит от номера наблюдения.
2. E( )=0 при t s, некоррелированность ошибок для разных наблюдений.
Ошибки независимы.
3. Ошибки , j=1…n, имеют совместное нормальное распределение ~ .
Рассмотрим случай линейной множественной регрессии:
.
Решением данной задачи являются оценки неизвестных параметров, которые находятся из решения системы уравнений:
(4.1.2)
Однако после нахождения оценок неизвестных параметров модели возникает вопрос о сравнимости влияния факторов на результирующий признак. Полученные оценки коэффициентов линейной регрессионной модели нельзя использовать для сравнения влияния факторов , так как у них могут быть различные размерности (этаж, , рубли, кг и т.д.) и разные выборочные дисперсии.
В данном случае рассматривается стандартизированное уравнение регрессии:
(4.1.3)
где , - стандартизированы переменные для у и соответственно;
- стандартизированные коэффициенты регрессии.
Стандартизированные коэффициенты регрессии являются безразмерными величинами, то есть, сравнивая их значения, можно оценить влияние различных факторов на результирующий признак.
К стандартизированному уравнению регрессии применим МНК. Если
- исходное уравнение регрессии;
- оценки коэффициентов, полученные путем МНК, тогда
, - МНК – оценка для стандартизированной переменной;
параметр определяется как .
Одним из наиболее важных показателей, используемых для оценки качества подгонки регрессионной модели к исходным статистическим данным является коэффициент детерминации (индекс множественной корреляции):
(4.1.4)
Свойства коэффициента детерминации:
1) : если => , то есть полученные модельные значения полностью соответствуют исходным статистическим данным;
если , то полученная модель не объясняет поведение исследуемого ряда данных;
2) изменяется даже при простейшем преобразовании зависимой переменной, поэтому сравнивать по нему можно только регрессии с одинаковыми зависимыми переменными;
3) если в исследуемое уравнение регрессии добавить дополнительный фактор , то новой модели будет больше или равен исходной модели, таким образом, если взять число регрессоров равным числу наблюдений (m=n), всегда можно добиться того, что , но это не будет означать наличие содержательной зависимости y от регрессоров.
Замечание: на практике для получения качественной модели число наблюдений (n) должно превосходить число регрессоров (m) в модели не менее чем в 8 раз.
Чтобы устранить эффект связанный с ростом при возрастании числа регрессоров является коррекция на число регрессоров: скорректированным коэффициентом детерминации называется
(4.1.5)
где m – число регрессоров в модели,
n – число наблюдений.
Свойства скорректированного коэффициента детерминации:
1) ;
2) , но он может быть отрицательным;
3) .
Для оценки влияния фактора на у при исключении влияния остальных факторов ( ) используют коэффициент частной корреляции:
(4.1.6)
Частные коэффициенты корреляции изменяются в пределах от -1 до 1.
- 1. Что такое эконометрика?
- 1. Что такое эконометрика?
- 2. Основные типы эконометрических моделей
- 2.1. Регрессионные модели с одним уравнением
- 2.2. Модели временных рядов
- 2.3. Системы одновременных уравнений
- 3. Однофакторная парная регрессионная модель
- 3.1. Функциональная спецификация модели
- 3.2. Парная линейная регрессия
- 4. Множественная регрессия
- 4.1. Нахождение оценок неизвестных параметров
- 4.2. Значимость модели множественной регрессии
- 4.3. Мультиколлинеарность
- 4.4. Гетероскедастичность
- 4.5. Автокорреляция
- 4.6 Фиктивные переменные
- 5. Реализация типовых задач на компьютере
- 5.1 Регрессионный анализ в ms Excel
- 5.2 Другие возможности ms Excel
- 5.3 Анализ полученной модели
- 6. Задачи
- Глоссарий
- Список вопросов к экзамену (зачету)