Тест серий. Статистика Дарбина – Уотсона.
Начнем с частного случая, в котором автокорреляция подчиняется авторегрессионной схеме первого порядка:
.
Это означает, что величина случайного члена в любом наблюдении равна его значению в предшествующем наблюдении (т. е. его значению в период t — 1), умноженному на ρ, плюс новый et,. Данная схема оказывается авторегрессионной, поскольку e определяется значениями этой же самой величины с запаздыванием, и схемой первого порядка. В этом простом случае максимальное запаздывание равно единице. Предполагается, что значение e в каждом наблюдении не зависит от его значений во всех других наблюдениях. Если ρ положительно, то автокорреляция положительная; если ρ отрицательно, то автокорреляция отрицательная. Если ρ = 0, то автокорреляции нет и третье условие Гаусса—Маркова удовлетворяется.
Широко известная статистика Дарбина—Уотсона (d илиDW) определяется следующим образом:
Можно показать, что в больших выборках
d→2-2ρ
Если автокорреляция отсутствует, то ρ= 0, и поэтому величина d должна быть близкой к двум. При наличии положительной автокорреляции величина d, вообще говоря, будет меньше двух; при отрицательной автокорреляции она, вообще говоря, будет превышать 2. Так как ρ должно находиться между значениями 1 и — 1, то d должно лежать между 0 и 4.
Критическое значение d при любом данном уровне значимости зависит, как можно предполагать, от числа объясняющих переменных в уравнении регрессии и от количества наблюдений в выборке. К сожалению, оно также зависит от конкретных значений, принимаемых объясняющими переменными. Поэтому невозможно составить таблицу с указанием точных критических значений для всех возможных выборок, как это можно сделать для t- и F-статистик; но можно вычислить верхнюю и нижнюю границы для критического значения d. Для положительной автокорреляции они обычно обозначаются как dv и dL.
На рис. данная ситуация представлена в виде схемы; стрелка указывает критический уровень d, который обозначается как d . Если бы мы знали значение dкрит, то могли бы сравнить с ним значение d, рассчитанное для нашей регрессии. Если бы оказалось, что d> dкрит, то мы не смогли бы отклонить нулевую гипотезу от отсутствии автокорреляции. В случае d<dкрит мы бы отклонили нулевую гипотезу и сделали вывод о наличии положительной автокорреляции
Тест Дарбина—Уотсона на автокорреляцию
(показана зона неопределенности в случае предполагаемой
положительной автокорреляции)
Вместе с тем мы знаем только, что dкриm находится где-то между dL и dU. Это предполагает наличие трех возможностей:
Величина d меньше, чем dL. В этом случае она будет также меньше, чем dKpum, и поэтому мы сделаем вывод о наличии положительной автокорреляции.
Величина d больше, чем dU. В этом случае она также больше критического уровня, и поэтому мы не сможем отклонить нулевую гипотезу.
Величина d находится между dL и dU. В этом случае она может быть больше или меньше критического уровня. Поскольку нельзя определить, которая из двух возможностей налицо, мы не можем ни отклонить, ни принять нулевую гипотезу.
В случаях 1 и 2 тест Дарбина—Уотсона дает определенный ответ, но случай 3 относится к зоне невозможности принятия решения, и изменить создавшееся положение нельзя.
. Тест Дарбина—Уотсона на автокорреляцию
(показана зона неопределенности в случае предполагаемой
отрицательной автокорреляции)
Проверка на отрицательную автокорреляцию проводится по аналогичной схеме, причем зона, содержащая критический уровень, расположена симметрично справа от 2. Так как отрицательная автокорреляция встречается относительно редко, предполагается, что при необходимости вы сами вычислите границы зоны на основе соответствующих значений для положительной автокорреляции при данном числе наблюдений и объясняющих переменных. Это достаточно легко сделать. Как показано на рис., величина (4 — dU) есть нижний предел, ниже которого признается отсутствие автокорреляции, а (4 - dL) — верхний предел, выше которого делается вывод о наличии отрицательной автокорреляции.
- Эконометрическая модель.
- Измерения в экономике. Шкалы измерений.
- Случайные события и случайные переменные. Распределение случайных величин.
- Статистические характеристики случайных величин и их свойства.
- Основные функции распределения.
- Оценки статистических характеристик и их желательные свойства.
- Проверка статистических гипотез.
- Критерий и критическая область.
- Мощность статистического критерия. Уровень значимости.
- Модель линейной регрессии.
- Оценивание параметров регрессии. Метод наименьших квадратов.
- Система нормальных уравнений мнк и ее решение.
- Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- Коэффициент детерминации и его свойства.
- Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- Ковариационная матрица оценок коэффициентов регрессии.
- Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- Неприменимость статистических тестов
- Замещающие переменные. Фиктивные переменные.
- Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- Методы борьбы с мультиколлинеарностью.
- Линеаризация регрессионных моделей путем логарифмических преобразований.
- Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- Модель с постоянными темпами роста (полулогарифмическая модель).
- Полиномиальная регрессия.
- Кривая Филипса
- Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- 1. Графический анализ остатков
- 2. Тест ранговой корреляции Спирмена
- 3. Тест Голдфелда-Квандта
- Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- Автокорреляция. Причины автокорреляции.
- Влияние автокорреляции на свойства оценок мнк.
- Тест серий. Статистика Дарбина – Уотсона.
- Способы противодействия автокорреляции.
- Стохастические объясняющие переменные. Последствия ошибок измерения.
- Инструментальные переменные.
- Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- Модели с распределенными лагами.
- Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- Ожидания экономических агентов и лаговые переменные в моделях
- Модели наивных и адаптивных ожиданий.
- Модель гиперинфляции Кейгана.
- 44. Модель гиперинфляции Кейгана
- Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- Структурная и приведённая форма. Идентифицируемость
- Примеры
- Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- Системы эконометрических уравнений с лаговыми переменными.
- Модель Кейнса.
- Модель Клейна.
- Матричная форма записи модели Клейна