Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
однако вы не уверены в значимости х2. Считая, что модель должна выглядеть как
вы оцениваете регрессию
и вычисляете bl по формуле Cov (xt , y)/D (x1) вместо правильного выражения. По определению, b1, является несмещенной оценкой величины β1 если M(b1) равняется β1. Практически, если первоначальная модель верна, то
Если опустить х2 в регрессионном соотношении, то переменная x1 будет играть двойную роль: отражать свое прямое влияние и заменять переменную х2 в описании ее влияния. Данное кажущееся опосредованное влияние величины х1, на у будет зависеть от двух факторов: от видимой способности х1, имитировать поведение х2 и от влияния величины х2 на у.
Кажущаяся способность переменной x1, объяснять поведение х2 определяется коэффициентом наклона h в псевдорегрессии:
Величина h естественно, рассчитывается при помощи обычной формулы для парной регрессии, в данном случае Cov(x1,x2)/D (x1). Влияние величины х2, на у определяется коэффициентом β2,. Таким образом, эффект имитации посредством величины β2 может быть записан как β2Соу (х1, x2)/D (х1). Прямое влияние величины х1, на у описывается с помощью β1. Таким образом, при оценивании регрессионной зависимости у от переменной х1, (без включения в нее переменной х2) коэффициент при х1, определяется формулой:
b1+ b2,Cov (x1, x2)/D (х1) + Ошибка выборки.
При условии, что величина х, не является стохастической, ожидаемым значением коэффициента будет сумма первых двух членов этой формулы. Присутствие второго слагаемого предполагает, что математическое ожидание коэффициента будет отличаться от истинной величины β1, другими словами, оценка будет смещенной.
Таким образом, β1 смещена на величину, равную β2Cov (x1, x2)/D (x1). Направление смещения будет зависеть от знака величин β2 и Cov(x1,x2). Например, если β2 положительна, а также положительна ковариация, то смещение будет положительным, а b1 будет в среднем давать завышенные оценки β1,. Самостоятельно вы можете рассмотреть и другие случаи.
Есть, однако, один исключительный случай, когда оценка β1 остается несмещенной. Это случается, когда выборочная ковариация между х1, и х2 в точности равняется нулю. Если Cov (х1, x2) = 0, то смещение исчезает. Действительно, коэффициент, полученный с использованием парной регрессии, будет точно таким же, как если бы вы оценили правильно специфицированную множественную регрессию. Конечно, величина смещения здесь равнялась бы нулю и при β2 = 0, но в этом случае неправильной спецификации не возникает.
- Эконометрическая модель.
- Измерения в экономике. Шкалы измерений.
- Случайные события и случайные переменные. Распределение случайных величин.
- Статистические характеристики случайных величин и их свойства.
- Основные функции распределения.
- Оценки статистических характеристик и их желательные свойства.
- Проверка статистических гипотез.
- Критерий и критическая область.
- Мощность статистического критерия. Уровень значимости.
- Модель линейной регрессии.
- Оценивание параметров регрессии. Метод наименьших квадратов.
- Система нормальных уравнений мнк и ее решение.
- Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- Коэффициент детерминации и его свойства.
- Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- Ковариационная матрица оценок коэффициентов регрессии.
- Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- Неприменимость статистических тестов
- Замещающие переменные. Фиктивные переменные.
- Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- Методы борьбы с мультиколлинеарностью.
- Линеаризация регрессионных моделей путем логарифмических преобразований.
- Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- Модель с постоянными темпами роста (полулогарифмическая модель).
- Полиномиальная регрессия.
- Кривая Филипса
- Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- 1. Графический анализ остатков
- 2. Тест ранговой корреляции Спирмена
- 3. Тест Голдфелда-Квандта
- Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- Автокорреляция. Причины автокорреляции.
- Влияние автокорреляции на свойства оценок мнк.
- Тест серий. Статистика Дарбина – Уотсона.
- Способы противодействия автокорреляции.
- Стохастические объясняющие переменные. Последствия ошибок измерения.
- Инструментальные переменные.
- Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- Модели с распределенными лагами.
- Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- Ожидания экономических агентов и лаговые переменные в моделях
- Модели наивных и адаптивных ожиданий.
- Модель гиперинфляции Кейгана.
- 44. Модель гиперинфляции Кейгана
- Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- Структурная и приведённая форма. Идентифицируемость
- Примеры
- Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- Системы эконометрических уравнений с лаговыми переменными.
- Модель Кейнса.
- Модель Клейна.
- Матричная форма записи модели Клейна