Способы противодействия автокорреляции.
Возможно, вам удастся устранить автокорреляцию путем определения ответственного за нее фактора или факторов и соответствующего расширения уравнения регрессии. Когда такое возможно, это может оказаться наилучшим решением.
В других случаях процедура, которую следует принять, будет зависеть от характера зависимости между значениями случайного члена. В литературе наибольшее внимание уделяется так называемой авторегрессионной схеме первого порядка, так как она интуитивно правдоподобна, но для того, чтобы было целесообразным ее использование в более сложных моделях, оснований обычно не хватает. Вместе с тем если наблюдения проводятся ежеквартально или ежемесячно, могут оказаться более подходящими другие модели, но мы не будем их здесь рассматривать.
Если бы уравнение было правильной спецификацией для измерения величины случайного члена, то вы могли бы полностью устранить автокорреляцию, если бы знали величину ρ. Это будет продемонстрировано на примере уравнения регрессии, включающего только одну объясняющую переменную, однако при большем их числе действует тот же принцип. Предположим, что истинная модель задается выражением, так что наблюдения t и t — 1 формируются как
Теперь вычтем из первого уравнения второе, умноженное на ρ, и получим
:
Обозначим:
Это преобразование называется авторегрессионным, или преобразованием Бокса–Дженкинса.
Тогда преобразованное уравнение
где , не содержит автокорреляцию, поскольку ut независимы.
Конечно, на практике величина ρ неизвестна, его оценка получается одновременно с оценками аир. Имеется несколько стандартных способов такого оценивания, и, вероятно, один или нескольких таких способов могут быть реализованы в имеющемся у вас регрессионном пакете.
Метод Кокрана—Оркатта представляет собой итеративный процесс, включающий следующие этапы.
Оценивается регрессия с исходными непреобразованными данными.
Вычисляются остатки.
Оценивается регрессионная зависимость et от еt-1, соответствующая формуле и коэффициент при et-1 представляет собой оценку ρ (поскольку D(et-1)≈D(et),в качестве альтернативной оценки ρ можно принять коэффициент автокорреляции первого порядка re-1,e)
С этой оценкой ρ к преобразованному уравнению применяется МНК, который позволяет получить пересмотренные оценки α и β.
Повторно вычисляются остатки, и процесс возвращается к этапу 3.
Метод Хилдрета—Лу, также широко применяемый в регрессионных пакетах, основан на тех же самых принципах, но использует другой алгоритм вычислений. Здесь преобразованная регрессия оценивается для каждого значения ρ из определенного диапазона с заданным шагом внутри его. (Например, исследователь может задать диапазон от ρ = —1,00 до ρ= 1,00 с шагом 0,01.) Значение, которое дает минимальную стандартную ошибку для преобразованного уравнения, принимается в качестве оценки ρ, а коэффициенты регрессии определяются при оценивании уравнения с использованием этого значения.
- Эконометрическая модель.
- Измерения в экономике. Шкалы измерений.
- Случайные события и случайные переменные. Распределение случайных величин.
- Статистические характеристики случайных величин и их свойства.
- Основные функции распределения.
- Оценки статистических характеристик и их желательные свойства.
- Проверка статистических гипотез.
- Критерий и критическая область.
- Мощность статистического критерия. Уровень значимости.
- Модель линейной регрессии.
- Оценивание параметров регрессии. Метод наименьших квадратов.
- Система нормальных уравнений мнк и ее решение.
- Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- Коэффициент детерминации и его свойства.
- Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- Ковариационная матрица оценок коэффициентов регрессии.
- Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- Неприменимость статистических тестов
- Замещающие переменные. Фиктивные переменные.
- Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- Методы борьбы с мультиколлинеарностью.
- Линеаризация регрессионных моделей путем логарифмических преобразований.
- Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- Модель с постоянными темпами роста (полулогарифмическая модель).
- Полиномиальная регрессия.
- Кривая Филипса
- Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- 1. Графический анализ остатков
- 2. Тест ранговой корреляции Спирмена
- 3. Тест Голдфелда-Квандта
- Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- Автокорреляция. Причины автокорреляции.
- Влияние автокорреляции на свойства оценок мнк.
- Тест серий. Статистика Дарбина – Уотсона.
- Способы противодействия автокорреляции.
- Стохастические объясняющие переменные. Последствия ошибок измерения.
- Инструментальные переменные.
- Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- Модели с распределенными лагами.
- Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- Ожидания экономических агентов и лаговые переменные в моделях
- Модели наивных и адаптивных ожиданий.
- Модель гиперинфляции Кейгана.
- 44. Модель гиперинфляции Кейгана
- Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- Структурная и приведённая форма. Идентифицируемость
- Примеры
- Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- Системы эконометрических уравнений с лаговыми переменными.
- Модель Кейнса.
- Модель Клейна.
- Матричная форма записи модели Клейна