Аналитические методы решения оптимизационных задач
Для реализации аналитических методов целевая функция должна быть задана аналитически. Аналитические методы могут использоваться для решения однофакторных и многофакторных задач.
-
Однофакторные задачи. Пусть целевая функция зависит от единственного аргумента. Для поиска ее экстремума (скажем, минимума) используем известные приемы математического анализа. Достаточно взять производную функции и приравнять ее к нулю, а затем решить полученное уравнение. Для определения типа экстремума (минимум, максимум или точка перегиба) потребуется также взять вторую производную. Знак второй производной указывает на тип экстремума: положительное значение говорит о том, что найден минимум, отрицательное – максимум функции.
y = f (x) → min
y = 2x2 + 4x – 8 → min
y'=0 4x + 4 = 0
x = -1
y''Є(- ∞; +∞ ) y'' = 0 – точка перегиба
y'' < 0 – максимум функции
y'' > 0 – минимум функции.
Аналитический метод для однофакторных задач предъявляет высокие требования к целевой функции: она должна быть задана аналитически и иметь 1-ю и 2-ю производные. В этом случае поиск решения осуществляется методами математического анализа.
-
Многофакторные задачи.
В многофакторных задачах целевая функция зависит от двух и более аргументов.
F(x1, x2, …, xn) – функция нескольких переменных (≥2). Пусть, например, аналитическое выражение целевой функции имеет следующий вид:
у = 2х12 + 3х22 + 4х1 + 5х2 – 16.
4х1 + 4 = 0
6х2 + 5 = 0.
Для решения воспользуемся методами математического анализа применительно к функции нескольких переменных. Возьмем частные производные по каждому аргументу и приравняем их к нулю. Получим систему уравнений, решая которую определим условия экстремума целевой функции.
Аналитические методы для решения многофакторных задач так же используются крайне редко, т.к.: функция должна быть задана аналитически (иметь 1-ю и 2-ю производные); в ходе решения задачи можно прийти к системе нелинейных уравнений, которую придется решать численными, приближёнными методами.
- Введение
- Системный анализ Основные понятия и определения системного анализа
- Внешние связи системы
- Классификация систем по их свойствам
- Моделирование технологических процессов и объектов
- Структурный подход для построения математических моделей
- Использование структурного подхода для составления моделей на молекулярном уровне
- Описание стехиометрии системы химических реакций
- Метод направленных графов
- Матричный метод
- Моделирование равновесия в системах химических реакций
- Моделирование кинетики химических реакций
- Скорость сложной химической реакции
- Интегрирование уравнений кинетики
- Численные методы интегрирования
- Химические реакции в потоке вещества
- Моделирование явлений тепло- и массопереноса
- Массоперенос
- Моделирование тепловых явлений
- Тепловая работа аппарата с частичным теплообменом
- Математические методы оптимизации технологических систем
- Методы построения обобщённых критериев
- Классификация оптимизационных задач
- Аналитические методы решения оптимизационных задач
- Поисковые (численные) методы решения однофакторных оптимизационных задач
- Экспериментальные методы оптимизации
- Методы линейного программирования