Системный анализ Основные понятия и определения системного анализа
Основным понятием данного раздела является понятие о технологических процессах и объектах как о системах.
Система – составной объект, части которого закономерно объединены и совместно выполняют общую функцию.
Системы могут быть искусственными и естественными.
Естественные системы. Они не имеют определенной цели существования и создаются в ходе эволюции. Примером естественных систем являются биологические, например организмы. Другим примером являются социальные системы.
Искусственные системы отличаются тем, что они создаются для вполне определенной цели (технические и технологические системы).
Целью технологических систем в металлургии цветных металлов является переработка сырья, содержащего цветные металлы, с получением продукта, имеющего заданные свойства.
Система, как целостный объект, существует во внешней по отношению к ней среде (можно провести границу между системой и внешней средой). В технологических системах внешняя среда проявляет себя, как источник перерабатываемого сырья и как потребитель произведенного продукта.
Система мысленно или физически может быть разделена на элементы, таким образом система представляет собой совокупность элементов. Элементы объединяются в систему за счет связей. Таким образом, в любой системе существует определённая структура связей.
Задачей системного анализа является определение свойств изучаемой системы. Изучение этих свойств позволяет в последующем выбрать соответствующий задаче метод построения модели. Таким образом, системный анализ является инструментом, позволяющим изучать функционирование сложных технологических систем и выбирать методы моделирования таких систем.
Система – это объект, обладающий набором системных свойств, к числу которых относятся:
-
Целостность и членимость;
-
Наличие существенных связей;
-
Наличие структуры или организации;
-
Наличие интегративного качества.
1. Целостность и членимость. Система, как целостный объект, может быть выделена из внешней среды, а как составной объект, может быть мысленно или физически разделена на составные части. Границами технологической системы в металлургии являются точки поступления исходного сырья и выхода готовой продукции. Масштаб системы может быть различным: от предприятия до отдельно рассматриваемой химической реакции, которая протекает в том или ином технологическом процессе. Как систему можно рассматривать также и отдельный технологический аппарат, совокупность таких аппаратов или технологических операций, т.е. технологическую схему, участок, отделение или цех.
2. Наличие существенных связей. Элементы объединяются в систему за счет связей между элементами. Связи можно разбить на три основные группы:
а) вещественные;
б)энергетические;
в)информационные.
Вещественные связи – представляют собой потоки вещества, циркулирующие между элементами системы. Особенности потоков вещества:
-
агрегатное состояние может быть различным (твердое, жидкость, газ);
-
фазовое состояние (одно- или многофазное).
Вещественные связи в системе подчиняются закону сохранения вещества: сумма масс всех потоков, поступающих в элемент системы, равна сумме масс, покидающих элемент системы. То есть для каждого элемента системы мы можем составить материальный баланс.
Энергетические связи – представляют собой потоки энергии, циркулирующие между элементами системы. Для металлургических систем виды энергии могут быть различными, наибольшее значение имеют потоки тепловой энергии. В некоторых технологических процессах (электролизе, например) более важное значение имеют и другие виды энергии (электрическая, механическая).
Энергетические связи подчиняются закону сохранения энергии, таким образом, для каждого элемента системы можно составить энергетический (в частности тепловой) баланс.
Информационные связи – представляют собой потоки информации, циркулирующие между элементами системы. Информация, циркулирующая в потоках, представляет собой величины технологических параметров, которые характеризуют работу каждого элемента системы. Чем выше уровень технологии, тем больше количество таких параметров измеряется по ходу технологического процесса, тем большее количество информации получается в информационном потоке. В отличие от вещественных и энергетических связей, информационные потоки описываются не законами сохранения, а законами распространения информации.
Все связи системы характеризуются направленностью.
Е1…Е3 – элементы 1…3.
Связь 1 является прямой связью Е1 и Е3, связь 3 является обратной.
Связи могут быть физически наполненными и не наполненными.
Физически не наполненные связи – это связи типа отношений: А>В
A<B
A=B.
Физически наполненные – связи вещественные и энергетические.
Связи должны обладать устойчивостью, то есть они должны существовать достаточно длительно во времени.
Вещественные связи в технологических системах представляют собой системы промышленного транспорта. Конкретный вид этих систем зависит от свойств вещественной связи: для твердых материалов – механические транспортирующие машины- конвейеры различных типов. Для жидкостей и газов используют системы трубопроводного транспорта.
Связи в системе должны быть существенными. Существенность оценивается количественно по величине силы связи – это отношение потока вещества (энергии), проходящего через эту связь к общему потоку вещества (энергии) в системе:
где: qi – доля общего потока вещества (энергии), приходящаяся на i связь;
- общий поток вещества (энергии) в системе.
В том случае, если сила связи больше критерия значимости α – связь существенная (α = 0,02…0,05). Величина критерия значимости выбирается исходя из ошибок измерения технологических параметров в том или ином технологическом процессе.
3. Наличие структуры или организации. Устойчивая во времени конфигурация связей образует структуру системы.
При описании систем на стадии системного анализа используется иерархический подход: на первом этапе описания системы стремятся представить её как совокупность небольшого количества элементов, при этом каждый элемент представляет собой подсистему и на следующем иерархическом уровне может быть разделен на некоторое количество своих элементов.
Иерархический подход позволяет представить сложные технические системы в простом виде, упрощая понимание взаимодействия всех элементов, что дает возможность представить функционирование всей системы в целом. Чем глубже уровень описания системы, тем больше элементов мы различаем в ее составе.
Например, автомобиль можно рассматривать как техническую систему. Цель такой системы – перевозка пассажиров и/или груза в заданном направлении (по дороге) за счет использования энергии топлива. На первом этапе системного анализа автомобиль является совокупностью небольшого числа элементов: двигатель является источником энергии, ходовая часть обеспечивает передвижение по дороге, рулевое управление и тормоза обеспечивают следование заданной траектории движения, кузов, шасси и кабина объединяют все элементы и несут груз и пассажиров.
При более глубоком анализе, на следующем иерархическом уровне, каждый из перечисленных элементов автомобиля рассматривается как подсистема, состоящая из своих элементов. Двигатель как источник энергии для движения, преобразует химическую энергию топлива в механическую энергию вращения вала. Для этого двигатель должен иметь систему питания топливом и воздухом (без воздуха топливо не горит), систему выпуска отработавших газов, механизм распределения топливо-воздушной смеси по цилиндрам, кривошипно-шатунный механизм, с помощью которого движение поршней в цилиндрах преобразуется во вращение вала.
Такой анализ можно продолжать и далее, до отдельных деталей, из которых вес и состоит. Разумеется, количество таких деталей будет возрастать очень быстро и достигнет многих тысяч. Если начать с того, что автомобиль является совокупностью нескольких тысяч деталей, то взаимодействие их понять невозможно.
Существуют типовые структуры связей в системах:
1.Сетевая структура. Пусть имеется система из пяти элементов, число элементов n=5, каждый из них имеет n – 1 связь.
Каждый элемент в такой структуре связан со всеми остальными.
Достоинства: устойчивость, равноправность элементов. В случае, если какой-либо элемент неработоспособен (потерял связи с остальными элементами системы), система в целом остается работоспособной. Ущерб с точки зрения функционирования системы минимальный и одинаковый для любого из элементов.
Количество связей в такой структуре наибольшее, а каждая связь требует определенных затрат. Следовательно, такая структура надежная, но дорогая. Ее применение оправданно там, где надежность функционирования системы является основным требованием, например в энергетике.
2. Скелетная структура. Рассмотрим систему из девяти элементов, n=9. Пусть система имеет скелетную структуру. Каковы ее особенности?
Такая структура обладает компромиссными качествами и требованиями к элементам. Связи элементов образуют фрагменты, которые объединяются затем в целостную систему. Требования в отношении надежности функционирования элементов становятся неодинаковыми. Так например, нарушения в работе элемента 3 означают минимальный ущерб для системы, означающий потерю только одного этого элемента. Если же перестает работать элемент 1, то система теряет целый фрагмент, а нарушение работы элемента 4 означают, что система распадается на отдельные фрагменты и перестает функционировать. Очевидно, что самые высокие требования по надежности предъявляются к элементу 4, средние – к элементам 1 и 7, минимальные- к элементам 3,6 и 9.
3. Централистская структура. Рассмотрим еще раз систему из девяти элементов, n=9, но имеющую централистскую структуру. Основное ее отличие от предыдущих структур в том, что количество связей минимально. Это способствует снижению стоимости связей, но выдвигает жесткие требования к надежности элементов. Наиболее надежным должен быть центральный элемент системы, поскольку при невозможности его функционирования система тут же превращается в набор разрозненных элементов, т.е. перестает работать как целостный объект. К периферическим элементам требования по надежности остаются достаточно низкими: утрата любого из этих элементов приводит к минимальному ущербу для функционирования всей системы. Пример такой системы в технике – стационарные телефонные системы связи.
-
Наличие интегративного качества. Интегративное качество – это новое качество системы, которым обладает вся система в целом и не обладает ни один отдельно взятый элемент системы. Возникновение интегративного качества рассмотрим на следующем примере.
Медеплавильный завод как технологическая система имеет ясно поставленную цель: он создан для переработки медных концентратов и получения черновой меди. Пользуясь методом системного подхода, мы можем выделить в структуре медеплавильного завода несколько (три, например) основных элемента. Такими элементами пусть будут цех подготовки шихты, плавильное отделение, в котором из приготовленной шихты получают медный штейн, и отделение конвертирования, где штейн перерабатывается на черновую медь.
Ни один из трех элементов системы не может решить поставленной задачи: цех подготовки шихты перерабатывает медные концентраты, но производит не черновую медь, а только готовит шихту для последующей плавки на штейн. Отделение конвертирования производит черновую медь, но не из медных концентратов, а из ранее полученного штейна, а плавильное отделение и вовсе далеко от поставленной цели, поскольку для его работы необходима подготовленная шихта, а результатом плавки является всего лишь полупродукт – медный штейн.
Интегративное качество образуется только в совокупности всех элементов системы. В целом медеплавильный завод решает поставленную задачу, хотя ни один из его элементов не обладает таким свойством.
- Введение
- Системный анализ Основные понятия и определения системного анализа
- Внешние связи системы
- Классификация систем по их свойствам
- Моделирование технологических процессов и объектов
- Структурный подход для построения математических моделей
- Использование структурного подхода для составления моделей на молекулярном уровне
- Описание стехиометрии системы химических реакций
- Метод направленных графов
- Матричный метод
- Моделирование равновесия в системах химических реакций
- Моделирование кинетики химических реакций
- Скорость сложной химической реакции
- Интегрирование уравнений кинетики
- Численные методы интегрирования
- Химические реакции в потоке вещества
- Моделирование явлений тепло- и массопереноса
- Массоперенос
- Моделирование тепловых явлений
- Тепловая работа аппарата с частичным теплообменом
- Математические методы оптимизации технологических систем
- Методы построения обобщённых критериев
- Классификация оптимизационных задач
- Аналитические методы решения оптимизационных задач
- Поисковые (численные) методы решения однофакторных оптимизационных задач
- Экспериментальные методы оптимизации
- Методы линейного программирования