Моделирование технологических процессов и объектов
Основные понятия и определения
Модель – есть отражение наиболее существенных сторон моделируемого объекта.
Моделируемый объект – технологическая система.
Субъект моделирования – специалист предметной области (в нашем случае – инженер-металлург), создающий модель. Таким образом, всякая модель содержит субъективный фактор. Основная роль субъекта моделирования состоит в определении существенных свойств объекта, которые должны быть включены в модель. Существенные признаки объекта выбираются, исходя из цели создания модели и из особенности моделируемого объекта.
Модель и моделируемый объект не являются идентичными: модель является аналогом объекта моделирования.
Для объекта моделирования в металлургии наиболее существенными являются физико-химические процессы, являющиеся основой той или иной технологии. Таком образом, модели металлургических процессов и объектов в первую очередь должны включать описания химических взаимодействий, сопровождающие эти взаимодействия явления тепло- и массопереноса, гидродинамические особенности работы, теплообменные процессы и т.д.
Различают два существенно отличающихся между собой класса моделей:
-
модели – объекты;
-
концептуальные модели.
Отличительной особенностью моделей-объектов первого типа является то, что они воспроизводят однородный физический процесс, происходящий в моделируемом объекте. Например, для изучения движения газов и запыленности газового потока в печи создают физическую модель, которая является уменьшенной масштабной копией печи. Через такую модель пропускают поток газа (или жидкости), воспроизводя однородный с моделируемым объектом процесс движения газа. Для того, чтобы увидеть картину течения, газ в модели смешивают с дымом. Такие модели создаются на основе использования методов физического моделирования.
В отличие от моделей объектов, концептуальные модели не являются геометрическим подобием объектов, они не воспроизводят физический процесс, а представляют собой совокупность процедур, правил, связей, закономерностей, применяя которые, мы можем достоверно описать моделируемый объект. Для записи этих процедур и правил могут использоваться различные средства:
-
естественный язык – семантическая модель (например, технологическая инструкция). Описания с помощью естественного языка часто неоднозначны и не позволяют описать объект количественно.
-
если в качестве средства описания использованы средства математики, то мы имеем дело с математической моделью. Математически средства описания объектов моделирования могут быть различными:
а)могут использоваться аналитические средства: модель является уравнением или совокупностью уравнений различного вида;
б)алгоритм;
в)график;
г)таблица.
Независимо от класса, к которому принадлежит модель, она должна удовлетворять двум основным требованиям к моделям:
1. Экономичность. Это требование означает, что исследования, которые могут быть выполнены с помощью модели, должны обеспечить экономию времени и материальных средств по сравнению с экспериментом на объекте. Здесь нужно иметь в виду, что некоторые исследования принципиально не могут быть проведены непосредственно на объекте моделирования.
2. Традуктивность – возможность переноса результатов моделирования с модели на моделируемый объект. Пусть, например, задача моделирования состоит в изучении особенностей течения газов в рабочем пространстве печи и нас интересует, при каких условиях (т.е. при какой скорости течения) характер течения газа в печи станет турбулентным. Для ответа на этот вопрос проведем исследования на физической модели, являющейся геометрически уменьшенной масштабной копией печи. Пусть размеры печи соответствуют lо, а соответствующие им размеры модели lм. Характер течения газа зависит от величины критерия Рейнольдса:
, где ν – вязкость, w – скорость, l – размер.
В теории подобия, являющейся теоретической основой методов физического моделирования, утверждается, что подобие модели и моделируемого объекта достигается тогда, когда одинаковы величины основных критериев подобия в модели и моделируемом объекте.
Reм = Reо
Выразив величины критериев Рейнольдса в модели и моделируемом объекте, получаем выражение, которое позволит нам определить, при какой скорости газа в печи характер течения будет турбулентным, если известна (измерена нами экспериментально) такая скорость в модели и известен геометрический масштаб уменьшения модели.
=> .
Как видим, недостаточно измерить скорость турбулизации потока в модели, необходимо еще знать, как пересчитать результат измерения на модели и применить его на моделируемый объект. Это и есть правило традукции, и в случае физической модели оно устанавливается на основе теории подобия.
Для математических моделей правило традукции базируется на аналогии дифференциальных уравнений, описывающих сходные свойства объекта и модели. Правила традукции выводятся на основе применения фундаментальных физических и химических законов.
Существует принципиально два пути построения модели объекта, если речь идет о математической модели:
-
эмпирический;
-
структурный.
Эмпирический подход применяется широко. Для построения модели в этом случае не требуется знать внутреннюю структуру моделируемого объекта, т.е. его элементы, характер связей между ними, нет необходимости знать, как описать эти связи количественно.
Эмпирический подход носит также название метода «черного ящика», поскольку наши знания о моделируемом объекте не позволяют определить его внутреннюю структуру. Применительно к металлургическому процессу или объекту это означает, например, что нам неизвестны основные физико-химические взаимодействия, мы не знаем, какие именно химические реакции происходят в объекте и в какой последовательности они осуществляются, как полно завершаются и с какой скоростью протекают. Остается представить объект как систему с ее входами и выходом в виде «черного ящика», внутреннее устройство которого и функционирование нам неизвестно. Но для практических целей было бы достаточно ответить на вопрос, каково будет состояние такой системы при известных величинах на ее входах. Для ответа не вопрос достаточно закономерным образом изменять состояния входов системы и наблюдать при этом, как изменяется состояние ее выхода в ответ на изменение состояния входов. В простейшем случае можно зафиксировать состояния всех входов, кроме одного. Изменяя величину на этом входе (температуру, например), получим зависимость выходной величины (например, извлечения металла в раствор при выщелачивании) от этого фактора.
Эта зависимость в общем случае может быть нелинейной, а ее график будет представлен некой кривой. Из математики известно, что нелинейные функции могут быть представлены с помощью их разложения в ряд. Используя такой подход можно любую функцию представить в виде полинома n-ной степени. Основная задача в процессе построения такой модели сводится к определению коэффициентов полинома b0,b1…..bn. Приемы построения таких моделей широко известны и приводятся в многочисленных литературных источниках. Более того, алгоритмы создания таких моделей реализованы в статистических пакетах прикладных программ, доступных для использования практически на любом персональном компьютере. От инженера-металлурга, желающего на основе использования эмпирического подхода получить модель технологического процесса, требуется только корректно провести системный анализ и выделить входы и выход системы.
у = b0 + b1x + b2x2 + … + bnxn – если влияет 1 вход.
К сожалению, эмпирические модели имеют существенный недостаток. Коэффициенты, входящие в полином, не обладают каким-либо физико-химическим смыслом. Их величина и знак в лучшем случае позволяют судить о направлении влияния того или иного входа на выход, но не дают информацию о причинах этого влияния. Это ограничивает применение эмпирических моделей.
При использовании структурного подхода необходимо знать внутреннюю структуру, её элементы и связи. Модель объекта создается на основе описания всех элементов и связей. Такое описание использует фундаментальные законы: закон сохранения вещества, закон сохранения энергии, закон эквивалентов, термодинамические законы и др. Для каждого элемента системы записываются материальный и тепловой балансы, которые затем объединяются в общее описание моделируемого объекта.
Независимо от того, на основе какого подхода создана модель, необходима оценка ее качества. На этом этапе необходим эксперимент с участием объекта моделирования. Идея состоит в том, что одинаковые значения входных величин задаются на соответствующих входах объекта и модели, как показано на рисунке. Состояние выхода объекта измеряется экспериментально, величина на выходе модели равна y. Используя полученную модель, проводят расчет выхода и получают предсказанное значение y^. Для каждого состояния входа и выхода можно вычислить отклонение. Если повторить эксперимент многократно, изменяя состояния входа и фиксируя состояния выхода, возвести в квадрат и просуммировать все квадраты отклонений, получим их сумму.
Критерием качества модели может быть (и чаще всего является) минимум суммы квадратов отклонения выходной величины, наблюдаемой на объекте и выходной величины, предсказанной с помощью модели. Чем меньше сумма квадратов отклонений, тем лучше модель воспроизводит моделируемый объект.
→ min – сумма квадратов отклонений должна
быть минимальной.
Алгоритм создания модели
Выбор метода создания модели зависит от свойств моделируемого объекта. В целом алгоритм создания модели иллюстрирует следующий рисунок.
Проблемная ситуация возникает, как правило, когда изменяется внешние условия функционирования технологического объекта. Это означает изменение либо на входе, либо на выходе (например, изменение состава перерабатываемого сырья, повышение требований к качеству готовой продукции). Изменившиеся условия требуют адекватных изменений в технологическом объекте. Необходимо ответить на вопрос о том какие изменения в работе технологического объекта необходимы для достижения поставленной технологической цели при изменившихся условиях.
Постановка цели – определение цели создания модели.
Цели создания модели могут быть различными:
-
уточнение закономерностей, управляющих технологическим процессом;
-
модель создаётся, как инструмент для прогнозирования поведения объекта;
-
для поиска оптимальных условий работы технологических объектов.
-
для прямого оптимального управления технологическим процессом (в результате поиска оптимальных условий найденные оптимальные условия используются для управления технологическим процессом).
Формулировка критериев. Необходимо оценить критерии для оценки качества модели.
Содержательный анализ и выбор типа модели. Применяя методы системного подхода необходимо определить границы моделируемой системы, выделить ее из внешней среды и определить ее входы и выходы. На следующем этапе системного анализа выявляется внутренняя структура объекта, определяются его элементы и связи этих элементов, образующие структуру моделируемого объекта. На этом этапе становится понятно, к какому классу в соответствии со своими свойствами принадлежит моделируемый объект. Завершение содержательного анализа является выбор метода построения модели. Здесь возможны три дальнейших направления.
Аналитический метод или структурный подход. Используется для детерминированных систем с известной нам структурой внутренних связей.
Экспериментальный метод или эмпирический подход применяется для стохастических систем, подверженных действию возмущений, которыми нельзя пренебречь. Характер и величина возмущений при этом нам неизвестны, и учесть их действие аналитическим методом невозможно. Экспериментальный подход также является единственным выбором для систем, внутренняя структура которых нам недостаточно известна.
Имитационный метод используется для некоторых классов систем, например дискретно-непрерывных систем массового обслуживания.
После выбора метода построения модели содержание дальнейших шагов определяется выбранным методом.
Составление формализованного описания. На этом этапе, используя установленную структуру связей объекта и, применяя фундаментальные законы, создают математическое описание моделируемого объекта. Таким образом, модель в этом случае представляет собой алгоритм вычислений, уравнение или систему уравнений различного вида. Выполняя расчёты по этому алгоритму, решая системы уравнений, по заданным начальным условиям, можно рассчитать состояние выхода объекта. Наиболее популярными формами описания для металлургических процессов и объектов является материальный и тепловой баланс. Уравнения материального и теплового балансов могут быть записаны в дифференциальной или интегральной форме.
Планирование эксперимента. На этом этапе выбирается количество опытов, условия каждого опыта, т.е. сочетание факторов на входе системы в каждом проводимом опыте.
Выполнение эксперимента – выполнение запланированных опытов. В частности, для системы с тремя входами х1,х2,х3 и выходом у при постановке полного факторного эксперимента потребуется провести количество опытов 23=8. В этих опытах сочетания величин факторов на входе не повторяются. Величины на входах будем задавать на двух уровнях, т.н. верхнем и нижнем, изменяя их в пределах выбранного диапазона. Например, температура в технологическом объекте может быть в пределах 1100-1300 оС. Для оценки влияния температуры на процесс будем проводить опыты либо при нижнем, либо при верхнем значении температуры из этого диапазона. Обозначим верхний уровень знаком плюс, а нижний уровень знаком минус. Тогда матрица планирования эксперимента будет соответствовать ниже приведенной таблице. Для ее построения выделим три столбца, соответствующие факторам на входе и столбец для выходной величины, которую обычно именуют откликом. В столбцах факторов будем чередовать значения на верхнем и нижнем уровнях, причем в каждом правом столбце будем чередовать значения вдвое реже по сравнению с левым. В результате получаем матрицу эксперимента с неповторяющимися значениями факторов.
Для исключения влияния возмущений и случайных ошибок (связанных, например, с погрешностями измерения отклика) опыты проводят в случайной последовательности, например, первым проводят опыт, условия которого соответствуют третьей строке матрицы, вторым по порядку проводят опыт с условиями, соответствующими восьмой строке и т.д. Каждый раз измеряют значение выходной величины (отклика) и записывают результат в соответствующую строку матрицы, как показано в таблице.
Обработка результатов опыта подробно изложена в литературе и проводится в соответствии с известным алгоритмом. В результате такой обработки модель является полиномом первого порядка, содержащим свободный член и слагаемые, в которых присутствует коэффициент и значение фактора в первой степени.
Очень важно, что при таком планировании эксперимента матрица планирования обладает свойством ортогональности, а это позволяет выделить влияние каждого фактора на отклик отдельно от остальных факторов. Таким образом, величины коэффициентов в уравнении показывают направление и силу влияния каждого фактора на отклик. Если коэффициент при данном факторе имеет положительный знак и большую величину, то увеличение этого фактор а способствует увеличению отклика. Как в любой эмпирической модели, величины коэффициентов b0, b1, b2, b3 показывают степень проявления данных факторов, но они не имеют явного физико-химического смысла, т.е. не объясняют, почему какие-то факторы оказывают большее действие на отклик по сравнению с другими.
х1 | х2 | х3 |
|
+ | + | + | у4 |
- | + | + | у5 |
+ | - | + | у1 |
- | - | + | у8 |
+ | + | - | у3 |
- | + | - | у7 |
+ | - | - | у6 |
- | - | - | у2 |
у = b0 + b1x1+ b2x2 + b3x3
Имитационное моделирование применяется для создания моделей дискретных или дискретно-непрерывных систем. Такие системы плохо описываются аналитически и затруднительно изучаются экспериментально. Модель создаётся как моделирующий алгоритм, воспроизводящий работу моделируемого объекта.
- Введение
- Системный анализ Основные понятия и определения системного анализа
- Внешние связи системы
- Классификация систем по их свойствам
- Моделирование технологических процессов и объектов
- Структурный подход для построения математических моделей
- Использование структурного подхода для составления моделей на молекулярном уровне
- Описание стехиометрии системы химических реакций
- Метод направленных графов
- Матричный метод
- Моделирование равновесия в системах химических реакций
- Моделирование кинетики химических реакций
- Скорость сложной химической реакции
- Интегрирование уравнений кинетики
- Численные методы интегрирования
- Химические реакции в потоке вещества
- Моделирование явлений тепло- и массопереноса
- Массоперенос
- Моделирование тепловых явлений
- Тепловая работа аппарата с частичным теплообменом
- Математические методы оптимизации технологических систем
- Методы построения обобщённых критериев
- Классификация оптимизационных задач
- Аналитические методы решения оптимизационных задач
- Поисковые (численные) методы решения однофакторных оптимизационных задач
- Экспериментальные методы оптимизации
- Методы линейного программирования