1.5 Контрольные вопросы к разделу 1
1. Каков экономический смысл целевой функции в задаче математического программирования?
2. В чем отличие оптимального плана от допустимого плана модели математического программирования?
3. Каким образом нахождение минимума целевой функции можно свести к решению задачи на ее максимум?
4. Чем задачи линейного программирования отличаются от задач нелинейного программирования?
5. Придумайте модель линейного и модель нелинейного программирования.
6. Пусть в ходе решения задачи линейного программирования определен многоугольник области допустимых решений. В какой части допустимой области целевая функция принимает экстремальное значение?
7. Как определить линию уровня целевой функции, соответствующую некоторой константе C? Каким образом относительно нее будут располагаться все другие линии уровня этой функции.
8. Как определить направления наискорейшего возрастания целевой функции?
- Экономико-математические методы
- 1 Общая задача математического
- 1.1 Модель математического программирования
- 1.2 Математическая формулировка задач линейного
- 1.3 Примеры построения простейших моделей математического
- 1.4 Геометрическая интерпретация задач линейного
- 1.4.1 Графический метод решения
- 1.4.2 Схема решения задачи графическим методом
- 1.4.3 Особые случаи решения задач линейного
- 1.5 Контрольные вопросы к разделу 1
- 2 Симплекс-метод решения задач линейного
- 2.1 Симметричный симплекс-метод
- 2.2 Экономический анализ оптимального плана по последней
- 2.3 Симплекс-метод с искусственным базисом
- 2.4. Схема решения задач линейного программирования
- 2.5. Особые случаи при решении задач симплекс-методом
- 2.6 Контрольные вопросы к разделу 2
- 3 Двойственные задачи линейного
- 3.1 Понятие о двойственных задачах
- 3.2 Теоремы двойственности в линейном программировании
- 3.3 Экономическая интерпретация двойственных задач
- 3.4. Примеры построения двойственных задач
- 3.5 Контрольные вопросы к разделу 3
- 4 Транспортная задача линейного
- 4.1 Математическая постановка транспортной задачи
- 4.2 Метод потенциалов решения транспортной задачи
- Числаui являются потенциалами строк, аvj – потенциалами столбцов. Из теоремы следует, что для того, чтобы план был оптимальным, необходимо выполнение следующих условий:
- Если хотя бы одна незанятая клетка не удовлетворяет условию (б), то план не оптимален.
- 4.3 Схема решения транспортной задачи
- 4.4 Контрольные вопросы к разделу 4
- 5 Методы решения задач нелинейного
- 5.1 Классификация задач математического программирования
- 5.2 Метод Лагранжа
- 5.3 Метод динамического программирования
- 5.4 Применение динамического программирования для решения задач о замене оборудования и эффективного использования
- 5.5 Контрольные вопросы к разделу 5
- 6 Наиболее распространенные модели
- Содержание
- Литература
- Экономико-математические методы Учебное пособие