logo
Взрыв в метрополитене

1.2.4 Количественный анализ ДО

Определение вероятности события высшего уровня

Базовым показателем качества элементов технических систем и систем «человек-машина-среда» является вероятность безотказной (безаварийной) работы, которая определяется вероятностью того, что время безотказной работы элемента больше заданного значения времени :

. (10)

Аналогично определяется вероятность безотказной работы системы :

, (11)

где - время безотказной работы системы. Если отказ любого элемента приводит к отказу всей системы, то при условии независимости отказов элементов вероятность безотказной работы системы определяется так:

, (12)

где - вероятности безотказной работы элементов, - число элементов системы.

Другим показателем качества элемента системы является вероятность его отказа, которая определяется как вероятностью того, что время безотказной работы элемента не превышает заданного значения времени :

. (13)

Зависимость вероятности безотказной работы элемента от времени является функцией распределения вероятности случайной величины - времени безотказной работы.

Аналогично определяется вероятность безотказной работы системы, зависимость которой от времени является функцией распределения вероятности случайной величины - времени безотказной работы системы:

. (14)

Отказ и безотказная работа элемента или системы являются противоположными событиями, поэтому вероятности данных событий связаны следующими соотношениями:

, (15)

. (16)

Соотношения (15) и (16) позволяют определить вероятность отказа системы, который происходит при отказе любого элемента системы, с помощью выражения (12):

, (17)

где - вероятности отказов элементов системы.

Если отказ системы происходит только в случае отказа всех ее элементов, то при условии независимости отказов элементов вероятность отказа системы определяется с помощью теоремы умножения вероятностей:

. (18)

Используя выражения (15) и (16), можно получить выражение для

вероятности безотказной работы системы при таком же условии для ее отказа:

. (19)

Расчет ПН (показатель надежности), событий предпосылок и события высшего уровня на основе ДО

Для определения вероятности события - «Пожар метрополитене» будем считать, что вероятности базисных событий во время движения автомобиля не меняются. Зададимся следующими значениями данных вероятностей:

Расчет ПН

Далее последовательно определяем вероятности событий четвертого, третьего, второго и первого уровней дерева отказов, учитывая, что при логическом умножении (конъюнкции) независимых событий их вероятности, согласно (18), перемножаются, а при логическом суммировании (дизъюнкции) определяются согласно (17). Выражение (17) при и при запишется так:

, (20)

(21)

Вероятности событий четвертого уровня определяются так:

(22)

Определяем вероятности событий третьего уровня:

(23)

Вероятности событий второго уровня определяются так:

(24)

Определяем вероятности событий первого уровня:

(25)

Расчет модулей МПС, а также видов МПС и модулей МПС событий высшего уровня

Определяем вероятность события высшего уровня:

(26)

Вычисление вероятности события высшего уровня по вероятностям МПС с использованием аппроксимации 1-ого порядка

Вероятности МПС можно определить по вероятностям базисных событий, полагая, что данные события являются независимыми, и используя теорему умножения вероятностей:

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Используя полученные значения вероятностей МПС, определяем

вероятность события высшего уровня по следующей формуле:

(39)

где - вероятности МПС, - число МПС в полной совокупности для данного дерева отказов. После подстановки значений в (39), получаем .

Вычисление вероятности события высшего уровня при использовании аппроксимации 2-ого порядка

При аппроксимации второго порядка учитываются вероятности всех двойных логических произведений МПС:

. (40)

Так как в различные МПС могут входить одни и те же базисные события, то при определении вероятности конъюнкции данных МПС вероятности соответствующих событий должны учитываться только один раз. Ниже приведен расчет вероятности события высшего уровня, выполненный с помощью программы Mathcad. Вероятности базисных событий в данном расчете обозначены так же, как и сами события. Кроме того, использованы следующие обозначения:

- вероятность базисного события, - вероятность, определенная с использованием аппроксимации первого порядка. Для учёта повторения базисных событий в двойных конъюнкциях МПС необходимо разделить произведение вероятностей МПС на степени вероятностей повторяющихся базисных событий, которые должны быть на единицу меньше кратности повторения. Определим вероятности двойных дизъюнкций МПС:

Используя формулу (40), определяем вероятность события высшего уровня при аппроксимации второго порядка:

.

Анализ значимости базисных событий по критерию Фусселя-Везели.

Значимость события по критерию Фусселя-Везеля определяется формулой

, (41)

где - номер анализируемого события, - вероятность события высшего уровня, вычисленная по вероятностям только тех МПС,

которые содержат данное событие, при этом вероятности всех остальных МПС принимаются равными нулю, - номинальная вероятность события высшего уровня, вычисленная с учетом всех МПС дерева отказов.

Значимость события определяется так:

. (42)

Числитель данного выражения можно определить по формуле

(43)

Другая возможность определения значения заключается в последовательном вычислении вероятностей дизъюнкций , , …, . Например, вероятность первой дизъюнкции определяется так:

. (44)

Подставляя значения вероятностей МПС в формулу (41) или последовательно в формулу (42) и аналогичные формулы, получаем

.

Значимости других базисных событий рассчитываем по следующим формулам:

; (45)

; (46)

; (47)

; (48)

; (49)

; (50)

; (51)

; (52)

. (53)

Расположим полученные результаты в порядке уменьшения значимости:

; ; ; ;; ; ; ; ; .

Вывод: После анализа по Фусселю-Везели, результаты показали следующие значения: самый высокий риск у события А «Отсутствие обхода помещений». Далее событие I «Не знал как включить механизм» идет следом на втором месте, что тоже немало важно.На третьем месте событие B «Проникновение террористов». Следующее событие С «Отказ включения механизма

Фактор уменьшения риска рассчитывается по формуле:

(54)

Числитель выражения определяем по формулам:

(55)

Расположим полученные результаты в порядке уменьшения значимости:

; ; ; ; ;

; ; ;

Вывод: По степени риска три первых места занимают, как и в предыдущем анализе, событие А «Отсутствие обхода помещений», затем событие I «Не знал как включить механизм»,и событие B «Проникновение террористов». Затем следует событие С «Отказ включения механизма». Борьба с риском должна происходить аналогичными методами, что и в предыдущем анализе. На пятом месте событие L «Износ деталей» и K «Неисправность деталей». Эти два события могут привести к отказу тормозов. Поэтому следует уделять большое внимание к проведению ремонтных работ. Для уменьшения вероятностей событий F «Рабочий не увидел» и G «Рабочий не услышал»необходимо регулярно проверять уровень масла и доливать по мере необходимости, а так же производить своевременный замен сальника. Следующим по степени риска идёт событие D «Отказ звуковой сигнализации» и E «Отказ световой сигнализации».

Фактор увеличения риска для А определяется так:

(56)

Расположим полученные результаты в порядке уменьшения значимости:

; ; ; ; ; ;

; ; ; .

Вывод: Наиболее вероятным событием является событие А «Отсутствие обхода помещений», следующее В «Проникновение террористов». Эти события связанны с человеческим фактором. Затем следует событие I «Не знал как включить механизм», потом C «Отказ включения механизма», K «Неисправность деталей», L «Износ деталей». Должна проводиться своевременная проверка и замена изношенных деталей. Далее идут события G «Рабочий не услышал» и F «Рабочий не увидел», затем события D «Отказ звуковой сигнализации» и E «Отказ световой сигнализации», которые говорят о том, что они так же нуждаются в техническом обслуживании и замене неработающих элементов.

Дробный вклад i-того события

(57)

Расположим полученные результаты в порядке уменьшения значимости:

; ; ; ; ;

; ; ; ;

Вывод: Событие А «Отсутствие обхода помещений»на первом месте, далее I «Не знал как включить механизм», B «Проникновение террористов», С «Отказ включения механизма», K «Неисправность деталей», L «Износ деталей» F «Рабочий не увидел»,G «Рабочий не услышал», D «Отказ звуковой сигнализации», E «Отказ световой сигнализации». Событие I «Не знал как включить механизм», является механической системой. На ее работу могут повлиять факторы, связанные со старением элементов системы.

Показатель чувствительности для i-того числа

(58)

(59)

(60)

Расположим полученные результаты в порядке уменьшения значимости:

; ; ; ; ; ; ;

; ;

Вывод: В данном анализе наиболее вероятным событием будет являться событие А «Отсутствие обхода помещений», далее I «Не знал как включить механизм»,

B «Проникновение террористов», С «Отказ включения механизма»,

K «Неисправность деталей», L «Износ деталей»,

G «Рабочий не услышал», F «Рабочий не увидел», D «Отказ звуковой сигнализации», E «Отказ световой сигнализации». События I,C,K,L,G,F являются связанными с неисправностями той или иной системой механизма. Сбои происходят из-за неправильной эксплуатации, некачественного ремонта и износа деталей.

Компьютерный анализ ДО с использованием программы RiskSpectrum Professional

Сравнительный анализ результатов расчетов и компьютерный анализ

В результате качественного анализа дерева отказов события «Взрыв в метрополитене» установлено, что полная совокупность МПС содержит 12 сочетаний, в том числе, двойные - AC, AI, AK, AL, BC, BI, BK, BL и тройные - ADE, AFG, BDE, BFG.

Это подтверждается результатами МПС-анализа данного события, проведенного с помощью программного комплекса Risk Spectrum. При разработке мер по предотвращению анализируемого события необходимо минимизировать вероятности одновременного появления базисных событий, входящих в каждое МПС. Дерево отказов и результаты его анализа представлены в Приложении А.