Метод направленных графов
Граф – это фигура, построенная из элементов двух типов: вершин, которые изображаются в виде окружностей и связей, представляющих собой линии, направленные от вершины к вершине.
Вершины графа отображают массы веществ, а связи – переход веществ из одних в другие в ходе химической реакции. Применение метода направленных графов рассмотрим на следующем примере. Пусть технологический процесс является совокупностью следующих химических реакций:
A + 2B → 2C (1)
A → 2D (2)
C → E + H (3)
D → 2F + H (4).
Вещества А и В являются исходными, С и D – промежуточными, а Е, H и F – конечными продуктами реагирования. Как видно на схеме, процесс содержит последовательные и параллельные химические реакции. В частности С вначале образуется по реакции (1), а затем расходуется по реакции (3), аналогично D образуется по реакции (2) и расходуется по реакции (4). Компонент А параллельно расходуется по реакциям (1) и (2). Очевидно, что в этом случае ответить на вопрос о том, какая масса вещества участвует в каждой из реакций более сложно, чем для отдельно протекающей химической реакции.
Для ответа на этот вопрос построим направленный граф, который позволяет изобразить путь всех химических реакций и массы всех участвующих в них веществ.
Пусть для упрощения дальнейших рассуждений в системе в начальный момент времени отсутствовали промежуточные вещества C и D, а также конечные продукты реагирования E, F и H.
Построение графа начнем с начальных веществ. Вершиной 1 обозначим исходную массу А в системе. Часть вещества А расходуется по реакциям (1) и (2), обозначим ее вершиной 2. Другая часть А останется в системе, и эту остаточную массу А обозначим вершиной 3. Как видно на схеме, израсходованная масса А связана с реакциями (1) и (2), обозначим соответственно вершиной 4 расход вещества А по реакции (1), а вершиной 5 – расход вещества А по реакции (2).
Такие же рассуждения проведем в отношении вещества В. Исходную массу В в системе обозначим вершиной 6, расход В в реакции (1) изобразим вершиной 7, а остаток В в системе – вершиной 8.
Обратим внимание на реакцию (1). Продуктом ее является промежуточное вещество С, которого в начальный момент в системе не было. Обозначим массу С, образующуюся по реакции (1) вершиной 9. В реакции (1) принимают участие вещества А в количестве, соответствующем вершине 4, и В, в количестве, соответствующем вершине 7. Следовательно, необходимо направить связи от вершин 4 и 7 к вершине 9. Часть вещества С, являющегося промежуточным, расходуется по реакции (3). Отобразим эту массу С вершиной 11, другая часть С остается в системе, что отображает вершина 10.
Расход С обусловлен его участием в реакции (3), продуктами которой являются вещества Е и Н. Обозначим массу вещества Е, образующуюся по реакции (3) вершиной 12, а массу вещества Н, образующуюся по этой же реакции вершиной 13. Заметим, что Н образуется также и в ходе реакции (4).
Другое направление процесса связано с реализацией реакции (2), в которой принимает участие вещество А в количестве, соответствующем вершине 5. Продуктом реакции 2 является вещество D, массу которого отобразим вершиной 14.
Часть промежуточного вещества D далее разрушается в ходе реакции (4), эту массу D обозначим вершиной 15, а другая часть останется в системе, что соответствует вершине 16.
Реакция (4) идет сообразованием веществ F и Н. Масса образующихся в ней веществ обусловлена расходом D в количестве, соответствующем вершине 15. Обозначим вершиной 18 массу вещества F, образующуюся по реакции (4), а вершиной 17 – массу вещества Н, образующуюся по этой же реакции. Общую массу вещества Н в системе обозначим вершиной 19. Полученный граф, приведенный ниже на рисунке, полностью отображает ход всех химических реакций в рассматриваемой системе.
1 – начальная масса вещества А в системе.
2 – расход вещества А по реакциям (1) и(2).
3 – остаток вещества А в системе.
4 – масса вещества А, участвующего в реакции (1).
5 – масса вещества А, участвующего в реакции (2).
6 – начальная масса вещества В в системе.
7 – расход вещества В по реакции (1).
8 – остаток вещества В в системе.
9 – масса вещества С, образующегося по реакции (1).
10 – остаток вещества С в системе.
11 – расход вещества С по реакции (3).
12 – масса вещества Е, образующегося по реакции (3).
13 – масса вещества Н, образующегося по реакции (3).
14 – масса вещества D, образующегося по реакции (2).
15 – масса вещества D, израсходованного в реакции (4).
16 – остаток вещества D в системе.
17 – количество вещества F, полученного по реакции (4).
18 – количество вещества Н, полученного по реакции (4).
19 – общая масса вещества Н в системе.
Пусть все реакции осуществляются в изолированной по веществу системе, а компоненты находятся в растворе. В начальный момент времени концентрации исходных веществ равны: СА0 = 5моль/дм3; СВ0 = 6моль/дм3. В системе отсутствуют промежуточные и конечные продукты: СС0 = СD0 = СE0 = СF0 = СH0 = 0 моль/дм3.
Спустя некоторое время отобрали пробу раствора и определили текущие концентрации веществ: СА = 1моль/дм3; СН = 5моль/дм3; СС = СЕ =2моль/дм3. Остальные концентрации определить не удалось. Как рассчитать СВ, СF, СD?
Если дальнейшие рассуждения провести для объема системы, равного 1 дм3, то значения концентраций веществ численно совпадут с их массами.
Далее начнем движение по графу от известных вершин. В частности, начальная масса А равна 5 моль, а текущая (остаточная) – 1 моль. Следовательно, расход А составил 4 моль. В отношении В мы не можем провести подобные вычисления, поскольку остаток В нам неизвестен. К тому же неясно, какая масса А расходуется по реакции (1), а какая по реакции (2).
Воспользуемся другим направлением, и будем двигаться по графу от продуктов к исходным веществам. В частности, вещество Е, образующееся по реакции (3) представляет конечный продукт, и его масса соответствует вершине 12. В этой же реакции принимают участие вещества С и Н, следовательно расход С по реакции (3) в вершине 11 равен 2 моль, и такая же масса Н образуется в вершине 13.
Общая масса образовавшегося Н равна 5 моль, из них 2 – по реакции (3), другие 5-3=2 моль образуются по реакции (4), что отображено вершиной 17. Отсюда следует, что в реакции (4) образуется удвоенное количество молей F, покажем его в вершине 18. Масса F в вершине 18 равна 6 моль. Расход D по реакции (4) равен числу молей Н, образующихся по этой реакции, что соответствует вершине 15.
Остаток вещества С в системе равен 2 моль, что показано в вершине 10, а его расход в вершине 11 также равен 2 моль. Следовательно, по реакции (1) образуется 4 моль вещества С (вершина 9), а это требует удвоенного расхода вещества В и такого же количества А (вершины 7 и 4 соответственно). Отсюда остаток В в системе равен 2 моль.
Расход вещества А по реакции (2) составляет 2 моль, при этом образуется по реакции (4) вещество D в количестве 4 моль. Расход D равен 3 моль (вершина 15), остаток D в системе равен 1 моль.
Ответ: СВ = 2моль/дм3, СD = 1моль/дм3, СF = 6моль/дм3.
Преимущество метода направленных графов состоит в наглядности изображения хода процесса, но решение задачи требует сложных логических построений.
- Введение
- Системный анализ Основные понятия и определения системного анализа
- Внешние связи системы
- Классификация систем по их свойствам
- Моделирование технологических процессов и объектов
- Структурный подход для построения математических моделей
- Использование структурного подхода для составления моделей на молекулярном уровне
- Описание стехиометрии системы химических реакций
- Метод направленных графов
- Матричный метод
- Моделирование равновесия в системах химических реакций
- Моделирование кинетики химических реакций
- Скорость сложной химической реакции
- Интегрирование уравнений кинетики
- Численные методы интегрирования
- Химические реакции в потоке вещества
- Моделирование явлений тепло- и массопереноса
- Массоперенос
- Моделирование тепловых явлений
- Тепловая работа аппарата с частичным теплообменом
- Математические методы оптимизации технологических систем
- Методы построения обобщённых критериев
- Классификация оптимизационных задач
- Аналитические методы решения оптимизационных задач
- Поисковые (численные) методы решения однофакторных оптимизационных задач
- Экспериментальные методы оптимизации
- Методы линейного программирования