logo search
лекции по моде

Методы построения обобщённых критериев

В том случае, когда имеется несколько частных критериев оптимальности, имеет смысл попытаться свести задачу к однокритериальной. Для этого существует несколько методов построения обобщенных критериев оптимальности.

  1. Аддитивный метод: , где Ki – частный критерий оптимальности;

ai – весовой коэффициент при этом критерии.

Весовые коэффициенты имеют положительные и отрицательные знаки, в зависимости от того, в каком направлении действует частный критерий оптимальности. Так например, частным критерием оптимальности выбрано извлечение. Понятно, что при весовом коэффициенте выбирается знак плюс, поскольку улучшение частного критерия способствует улучшению обобщенного. Наоборот, если частный критерий – удельные энергозатраты, то знак весового коэффициента уместно выбирать отрицательным: увеличение удельных энергозатрат снижает значение обобщенного критерия оптимальности. Величина весового критерия выбирается в зависимости от степени важности частного критерия. Выбор величин весовых коэффициентов вносит элемент субъективности в формирование обобщенного критерия. Для уменьшения этой субъективной составляющей выбор величин весовых коэффициентов проводят с использованием метода экспертных оценок. Для этого привлекается коллектив экспертов, знающих особенности работы оптимизируемого объекта.

  1. Мультипликативный метод: .

Обобщенный критерий в этом случае является произведением частных критериев оптимальности. Например, сквозное извлечение по технологической схеме переработки сырья без оборотных материалов является произведением величин извлечения по всем стадиям технологической схемы. Аналогом в механике является к.п.д.: для всего механизма он является произведением к.п.д. отдельных частей этого механизма.

При постановке оптимизационных задач следующим шагом является назначение ограничений. Не будет преувеличением сказать, что все реальные задачи оптимизации являются задачами с ограничениями. Наличие ограничений способно радикально влиять на результат решения оптимизационной задачи, изменяя его в очень сильной степени. Поэтому к выбору ограничений следует подходить весьма серьезно.

Ограничения 1-го рода наложены на входные величины, поэтому являются более простыми.

Ограничения 2-го рода касаются выходных характеристик системы. Они являются более сложными, поскольку требуют ответа на вопрос: какие ограничения первого рода (на входные характеристики) требуется установить, чтобы не нарушались ограничения второго рода. Примером ограничений второго рода являются требования по химическому составу полученного продукта. Обычно они регламентированы соответствующими документами (ГОСТ, технические условия и т.п.). Возникает вопрос: какие ограничения на фиксированные входные характеристики (состав сырья) и управляющие воздействия (время пребывания вещества в аппарате, температура и др.) должны быть приняты, чтобы не нарушались ограничения первого рода (т.е. состав полученного продукта соответствовал требуемому)? Разумеется, выбор ограничений – это задача для специалиста, глубоко знающего оптимизируемый технологический процесс.

Следующим этапом постановки задачи является выбор оптимизирующих факторов. Выбираются из вектора управляющих воздействий те величины, которые влияют на выход системы, и которые мы можем изменять в пределах выбранных ограничений. Большинство задач оптимизации содержат эти ограничения.

В реальных задачах оптимизации технологических систем в цветной металлургии в качестве оптимизирующих факторов могут рассматриваться массовые соотношения между компонентами шихты (соотношение между массами концентратов разных производителей и флюсов различного состава), время пребывания вещества в технологическом аппарате (фактически определяет, как полно пройдут необходимые физико-химические превращения компонентов сырья в продукт), температура, давление, условия перемешивания и т.п. Как и выбор ограничений, выбор оптимизирующих факторов способен выполнить только специалист, глубоко знающих оптимизируемый процесс.

Последним этапом постановки оптимизационной задачи является формулирование вида целевой функции. Она является математическим выражением зависимости критерия оптимальности от оптимизирующих факторов. Целевая функция далеко не всегда представляет собой аналитическое выражение этой зависимости, значительно чаще эта связь представляет собой алгоритм вычислений, иногда достаточно сложных, следуя которому мы по известным значениям оптимизирующих факторов можем рассчитать значение целевой функции.

Для решения оптимизационной задачи необходима математическая модель процесса или объекта, который мы оптимизируем.

В математической форме оптимизационная задача сводится к следующему:

F(x, u, V, t) → max (min)

a1≤u1≤b1

a2≤u2≤b2

. . . . . . .

an≤un≤bn.

имеются управляющие воздействия u1, u2, …, un, которые могут изменяться в интервалах разрешённых ограничений a1 – b1, a2 – b2, …, an – bn. Целевая функция (F) отображает зависимость критерия оптимальности от управляющих воздействий u1 –un. Требуется отыскать такие управляющие воздействия u1 –un, которые, с одной стороны не нарушают ограничений поставленной задачи, а с другой – обращают целевую функцию в максимум или минимум.

Таким образом, на этапе постановки оптимизационной задачи требуется участие специалиста предметной области – металлурга по цветным металлам, глубоко разбирающегося в особенностях оптимизируемого объекта. Для оптимизации также необходима математическая модель оптимизируемого объекта.

Когда оптимизационная задача формализована, т.е. поставлена в математической форме, переходят к выбору математического метода ее решения. Выбор метода определяется свойствами самой оптимизационной задачи: какова задача, таков и адекватный задаче метод решения. Методы решения многих классов оптимизационных задач математически разработаны довольно хорошо, алгоритмы этих методов описаны, на базе алгоритмов разработаны и пакеты прикладных программ для решения оптимизационных задач.

Если знаний металлурга в этой области недостаточно (а это естественно), то на этом этапе следует привлечь к работе специалистов по прикладной математике, программистов и т.п. На этапе постановки задачи от специалистов этого профиля помощи ждать бессмысленно.

Выбор метода решения задачи зависит от ее свойств. В этой связи необходимо познакомиться с классификацией оптимизационных задач по их свойствам.