logo search
лекции по моде

Системный анализ Основные понятия и определения системного анализа

Основным понятием данного раздела является понятие о технологических процессах и объектах как о системах.

Система – составной объект, части которого закономерно объединены и совместно выполняют общую функцию.

Системы могут быть искусственными и естественными.

Естественные системы. Они не имеют определенной цели существования и создаются в ходе эволюции. Примером естественных систем являются биологические, например организмы. Другим примером являются социальные системы.

Искусственные системы отличаются тем, что они создаются для вполне определенной цели (технические и технологические системы).

Целью технологических систем в металлургии цветных металлов является переработка сырья, содержащего цветные металлы, с получением продукта, имеющего заданные свойства.

Система, как целостный объект, существует во внешней по отношению к ней среде (можно провести границу между системой и внешней средой). В технологических системах внешняя среда проявляет себя, как источник перерабатываемого сырья и как потребитель произведенного продукта.

Система мысленно или физически может быть разделена на элементы, таким образом система представляет собой совокупность элементов. Элементы объединяются в систему за счет связей. Таким образом, в любой системе существует определённая структура связей.

Задачей системного анализа является определение свойств изучаемой системы. Изучение этих свойств позволяет в последующем выбрать соответствующий задаче метод построения модели. Таким образом, системный анализ является инструментом, позволяющим изучать функционирование сложных технологических систем и выбирать методы моделирования таких систем.

Система – это объект, обладающий набором системных свойств, к числу которых относятся:

  1. Целостность и членимость;

  2. Наличие существенных связей;

  3. Наличие структуры или организации;

  4. Наличие интегративного качества.

1. Целостность и членимость. Система, как целостный объект, может быть выделена из внешней среды, а как составной объект, может быть мысленно или физически разделена на составные части. Границами технологической системы в металлургии являются точки поступления исходного сырья и выхода готовой продукции. Масштаб системы может быть различным: от предприятия до отдельно рассматриваемой химической реакции, которая протекает в том или ином технологическом процессе. Как систему можно рассматривать также и отдельный технологический аппарат, совокупность таких аппаратов или технологических операций, т.е. технологическую схему, участок, отделение или цех.

2. Наличие существенных связей. Элементы объединяются в систему за счет связей между элементами. Связи можно разбить на три основные группы:

а) вещественные;

б)энергетические;

в)информационные.

Вещественные связи – представляют собой потоки вещества, циркулирующие между элементами системы. Особенности потоков вещества:

Вещественные связи в системе подчиняются закону сохранения вещества: сумма масс всех потоков, поступающих в элемент системы, равна сумме масс, покидающих элемент системы. То есть для каждого элемента системы мы можем составить материальный баланс.

Энергетические связи – представляют собой потоки энергии, циркулирующие между элементами системы. Для металлургических систем виды энергии могут быть различными, наибольшее значение имеют потоки тепловой энергии. В некоторых технологических процессах (электролизе, например) более важное значение имеют и другие виды энергии (электрическая, механическая).

Энергетические связи подчиняются закону сохранения энергии, таким образом, для каждого элемента системы можно составить энергетический (в частности тепловой) баланс.

Информационные связи – представляют собой потоки информации, циркулирующие между элементами системы. Информация, циркулирующая в потоках, представляет собой величины технологических параметров, которые характеризуют работу каждого элемента системы. Чем выше уровень технологии, тем больше количество таких параметров измеряется по ходу технологического процесса, тем большее количество информации получается в информационном потоке. В отличие от вещественных и энергетических связей, информационные потоки описываются не законами сохранения, а законами распространения информации.

Все связи системы характеризуются направленностью.

Е1…Е3 – элементы 1…3.

Связь 1 является прямой связью Е1 и Е3, связь 3 является обратной.

Связи могут быть физически наполненными и не наполненными.

Физически не наполненные связи – это связи типа отношений: А>В

A<B

A=B.

Физически наполненные – связи вещественные и энергетические.

Связи должны обладать устойчивостью, то есть они должны существовать достаточно длительно во времени.

Вещественные связи в технологических системах представляют собой системы промышленного транспорта. Конкретный вид этих систем зависит от свойств вещественной связи: для твердых материалов – механические транспортирующие машины- конвейеры различных типов. Для жидкостей и газов используют системы трубопроводного транспорта.

Связи в системе должны быть существенными. Существенность оценивается количественно по величине силы связи – это отношение потока вещества (энергии), проходящего через эту связь к общему потоку вещества (энергии) в системе:

где: qi – доля общего потока вещества (энергии), приходящаяся на i связь;

- общий поток вещества (энергии) в системе.

В том случае, если сила связи больше критерия значимости α – связь существенная (α = 0,02…0,05). Величина критерия значимости выбирается исходя из ошибок измерения технологических параметров в том или ином технологическом процессе.

3. Наличие структуры или организации. Устойчивая во времени конфигурация связей образует структуру системы.

При описании систем на стадии системного анализа используется иерархический подход: на первом этапе описания системы стремятся представить её как совокупность небольшого количества элементов, при этом каждый элемент представляет собой подсистему и на следующем иерархическом уровне может быть разделен на некоторое количество своих элементов.

Иерархический подход позволяет представить сложные технические системы в простом виде, упрощая понимание взаимодействия всех элементов, что дает возможность представить функционирование всей системы в целом. Чем глубже уровень описания системы, тем больше элементов мы различаем в ее составе.

Например, автомобиль можно рассматривать как техническую систему. Цель такой системы – перевозка пассажиров и/или груза в заданном направлении (по дороге) за счет использования энергии топлива. На первом этапе системного анализа автомобиль является совокупностью небольшого числа элементов: двигатель является источником энергии, ходовая часть обеспечивает передвижение по дороге, рулевое управление и тормоза обеспечивают следование заданной траектории движения, кузов, шасси и кабина объединяют все элементы и несут груз и пассажиров.

При более глубоком анализе, на следующем иерархическом уровне, каждый из перечисленных элементов автомобиля рассматривается как подсистема, состоящая из своих элементов. Двигатель как источник энергии для движения, преобразует химическую энергию топлива в механическую энергию вращения вала. Для этого двигатель должен иметь систему питания топливом и воздухом (без воздуха топливо не горит), систему выпуска отработавших газов, механизм распределения топливо-воздушной смеси по цилиндрам, кривошипно-шатунный механизм, с помощью которого движение поршней в цилиндрах преобразуется во вращение вала.

Такой анализ можно продолжать и далее, до отдельных деталей, из которых вес и состоит. Разумеется, количество таких деталей будет возрастать очень быстро и достигнет многих тысяч. Если начать с того, что автомобиль является совокупностью нескольких тысяч деталей, то взаимодействие их понять невозможно.

Существуют типовые структуры связей в системах:

1.Сетевая структура. Пусть имеется система из пяти элементов, число элементов n=5, каждый из них имеет n – 1 связь.

Каждый элемент в такой структуре связан со всеми остальными.

Достоинства: устойчивость, равноправность элементов. В случае, если какой-либо элемент неработоспособен (потерял связи с остальными элементами системы), система в целом остается работоспособной. Ущерб с точки зрения функционирования системы минимальный и одинаковый для любого из элементов.

Количество связей в такой структуре наибольшее, а каждая связь требует определенных затрат. Следовательно, такая структура надежная, но дорогая. Ее применение оправданно там, где надежность функционирования системы является основным требованием, например в энергетике.

2. Скелетная структура. Рассмотрим систему из девяти элементов, n=9. Пусть система имеет скелетную структуру. Каковы ее особенности?

Такая структура обладает компромиссными качествами и требованиями к элементам. Связи элементов образуют фрагменты, которые объединяются затем в целостную систему. Требования в отношении надежности функционирования элементов становятся неодинаковыми. Так например, нарушения в работе элемента 3 означают минимальный ущерб для системы, означающий потерю только одного этого элемента. Если же перестает работать элемент 1, то система теряет целый фрагмент, а нарушение работы элемента 4 означают, что система распадается на отдельные фрагменты и перестает функционировать. Очевидно, что самые высокие требования по надежности предъявляются к элементу 4, средние – к элементам 1 и 7, минимальные- к элементам 3,6 и 9.

3. Централистская структура. Рассмотрим еще раз систему из девяти элементов, n=9, но имеющую централистскую структуру. Основное ее отличие от предыдущих структур в том, что количество связей минимально. Это способствует снижению стоимости связей, но выдвигает жесткие требования к надежности элементов. Наиболее надежным должен быть центральный элемент системы, поскольку при невозможности его функционирования система тут же превращается в набор разрозненных элементов, т.е. перестает работать как целостный объект. К периферическим элементам требования по надежности остаются достаточно низкими: утрата любого из этих элементов приводит к минимальному ущербу для функционирования всей системы. Пример такой системы в технике – стационарные телефонные системы связи.

  1. Наличие интегративного качества. Интегративное качество – это новое качество системы, которым обладает вся система в целом и не обладает ни один отдельно взятый элемент системы. Возникновение интегративного качества рассмотрим на следующем примере.

Медеплавильный завод как технологическая система имеет ясно поставленную цель: он создан для переработки медных концентратов и получения черновой меди. Пользуясь методом системного подхода, мы можем выделить в структуре медеплавильного завода несколько (три, например) основных элемента. Такими элементами пусть будут цех подготовки шихты, плавильное отделение, в котором из приготовленной шихты получают медный штейн, и отделение конвертирования, где штейн перерабатывается на черновую медь.

Ни один из трех элементов системы не может решить поставленной задачи: цех подготовки шихты перерабатывает медные концентраты, но производит не черновую медь, а только готовит шихту для последующей плавки на штейн. Отделение конвертирования производит черновую медь, но не из медных концентратов, а из ранее полученного штейна, а плавильное отделение и вовсе далеко от поставленной цели, поскольку для его работы необходима подготовленная шихта, а результатом плавки является всего лишь полупродукт – медный штейн.

Интегративное качество образуется только в совокупности всех элементов системы. В целом медеплавильный завод решает поставленную задачу, хотя ни один из его элементов не обладает таким свойством.