Случайные события и случайные переменные. Распределение случайных величин.
Событием называется случайным, если в данном испытании оно может произойти или не произойти. Событие называется достоверным (обозначается Е), если в данном испытании оно обязательно произойдет. Событие называется невозможным (обозначается Е), если в данном испытании оно никогда не произойдет.
Объединением, или суммой событий А и В называют событие С, которое состоит в том, что происходит хотя бы одно из событий А и В. (С происходит тогда и только тогда, когда происходит либо А, либо В, либо оба вместе.) Обозначение:
С = АВ, или С = А + В.
Пересечением, или произведением событий А и В называют событие С, которое состоит в том, что происходят оба события А и В. Обозначение: С = АВ, или С = АВ.
Отрицанием события А называют такое событие, которое состоит в том, что А не происходит. Обозначение для него А.
Событие, которое при нашем случайном испытании обязательно происходит, называют достоверным; которое не может произойти — невозможным. Вероятность достоверного события равна 1; вероятность невозможного события равна 0.
Если события А и В не могут произойти одновременно (т.е. если АВ — невозможное событие), их называют несовместимыми. Несовместимы, например, события А и А. В то же время А + А — событие достоверное.
Функцией распределения F(x) случайной величины X называют F(x) = Р(P х).
Ясно, что функция F(x) монотонно возрастает с ростом х (точнее сказать, не убывает, потому что могут существовать участки, на которых она постоянна). У дискретной случайной величины функция распределения ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны. Это точки разрыва F(x).
Законом распределения вероятностей дискретной случайной величины (или короче: законом распределения дискретной случайной величины) называется зависимость между возможными значениями (k = 1,2, …) дискретной случайной величины и их вероятностями (k = 1,2, …).
-
Содержание
- Эконометрическая модель.
- Измерения в экономике. Шкалы измерений.
- Случайные события и случайные переменные. Распределение случайных величин.
- Статистические характеристики случайных величин и их свойства.
- Основные функции распределения.
- Оценки статистических характеристик и их желательные свойства.
- Проверка статистических гипотез.
- Критерий и критическая область.
- Мощность статистического критерия. Уровень значимости.
- Модель линейной регрессии.
- Оценивание параметров регрессии. Метод наименьших квадратов.
- Система нормальных уравнений мнк и ее решение.
- Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- Коэффициент детерминации и его свойства.
- Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- Ковариационная матрица оценок коэффициентов регрессии.
- Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- Неприменимость статистических тестов
- Замещающие переменные. Фиктивные переменные.
- Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- Методы борьбы с мультиколлинеарностью.
- Линеаризация регрессионных моделей путем логарифмических преобразований.
- Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- Модель с постоянными темпами роста (полулогарифмическая модель).
- Полиномиальная регрессия.
- Кривая Филипса
- Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- 1. Графический анализ остатков
- 2. Тест ранговой корреляции Спирмена
- 3. Тест Голдфелда-Квандта
- Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- Автокорреляция. Причины автокорреляции.
- Влияние автокорреляции на свойства оценок мнк.
- Тест серий. Статистика Дарбина – Уотсона.
- Способы противодействия автокорреляции.
- Стохастические объясняющие переменные. Последствия ошибок измерения.
- Инструментальные переменные.
- Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- Модели с распределенными лагами.
- Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- Ожидания экономических агентов и лаговые переменные в моделях
- Модели наивных и адаптивных ожиданий.
- Модель гиперинфляции Кейгана.
- 44. Модель гиперинфляции Кейгана
- Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- Структурная и приведённая форма. Идентифицируемость
- Примеры
- Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- Системы эконометрических уравнений с лаговыми переменными.
- Модель Кейнса.
- Модель Клейна.
- Матричная форма записи модели Клейна