Кривая Филипса
Среди класса нелинейных функций, параметры которых без затруднений оцениваются методом наименьших квадратов, следует указать равностороннюю гиперболу
Такие модели могут быть использованы не только для характеристики связи удельных расходов сырья, материалов, топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота, т.е. на микроэкономичеком уровне, но и на макроуровне. Классическим примером является кривая Филлипса, которая характеризуюет нелинейное соотношение между нормой безработицы х и процентом прироста заработной платы у
Английский экономист А. В. Филлипс, проанализировав данные более чем за 100-летний период, в конце 50-х гг. XX в. установил обратную связь процента прироста заработной платы от уровня безработицы.
Для равносторонней гиперболы вида, 1/Х заменив на z, получим линейное уравнение регрессии y = a + bz, оценка параметров которого в задачах эконометрики производится с помощью метода наименьших квадратов. Система нормальных уравнений будет выглядеть так:
Для кривой Филлипса y = 0,00679 + 0,1842/x величина параметра a, равная 0,00679, значит, что с ростом уровня безработицы темп прироста заработной платы в своем пределе стремится к нулю. Таким образом, можно определить тот уровень безработицы, при котором заработная плата оказывается стабильной и темп ее прироста равен нулю. При b < 0 имеет место медленно повышающаюся функцию с верхней асимптотой при х стремящемся в бесконечности, т.е. с максимальным предельным уровнем у, оценку которого в уравнении дает параметр а.
Примером гиперболической связи может также служить взаимосвязь доли расходов на товары длительного пользования и общих сумм расходов (или доходов). Математическое описание такого рода взаимосвязей получило название кривых Энгеля. В 1857 г. немецкий статистик Э. Энгель на основе анализа семейных расходов сформулировал закономерность - с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается и наоборот. Однако это увеличение не беспредельно, так как на все товары сумма долей не может превышать единицу (100%), а на отдельные непродовольственные товары этот предел может характеризоваться величиной параметра а для уравнения вида y = a - b/x, где у — доля расходов на непродовольственные товары; х — доходы (или общая сумма расходов).
- Эконометрическая модель.
- Измерения в экономике. Шкалы измерений.
- Случайные события и случайные переменные. Распределение случайных величин.
- Статистические характеристики случайных величин и их свойства.
- Основные функции распределения.
- Оценки статистических характеристик и их желательные свойства.
- Проверка статистических гипотез.
- Критерий и критическая область.
- Мощность статистического критерия. Уровень значимости.
- Модель линейной регрессии.
- Оценивание параметров регрессии. Метод наименьших квадратов.
- Система нормальных уравнений мнк и ее решение.
- Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- Коэффициент детерминации и его свойства.
- Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- Ковариационная матрица оценок коэффициентов регрессии.
- Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- Неприменимость статистических тестов
- Замещающие переменные. Фиктивные переменные.
- Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- Методы борьбы с мультиколлинеарностью.
- Линеаризация регрессионных моделей путем логарифмических преобразований.
- Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- Модель с постоянными темпами роста (полулогарифмическая модель).
- Полиномиальная регрессия.
- Кривая Филипса
- Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- 1. Графический анализ остатков
- 2. Тест ранговой корреляции Спирмена
- 3. Тест Голдфелда-Квандта
- Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- Автокорреляция. Причины автокорреляции.
- Влияние автокорреляции на свойства оценок мнк.
- Тест серий. Статистика Дарбина – Уотсона.
- Способы противодействия автокорреляции.
- Стохастические объясняющие переменные. Последствия ошибок измерения.
- Инструментальные переменные.
- Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- Модели с распределенными лагами.
- Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- Ожидания экономических агентов и лаговые переменные в моделях
- Модели наивных и адаптивных ожиданий.
- Модель гиперинфляции Кейгана.
- 44. Модель гиперинфляции Кейгана
- Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- Структурная и приведённая форма. Идентифицируемость
- Примеры
- Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- Системы эконометрических уравнений с лаговыми переменными.
- Модель Кейнса.
- Модель Клейна.
- Матричная форма записи модели Клейна