Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
Предложение об ошибках в классической модели формируются наиболее жестким и не всегда реалистичным путем:
Предполагается, что ошибка ( ( = 1 … N)) образует так называемый слабый белый шум – последовательность центрированных ( ) и не коррелированных случайных величин с одинаковыми дисперсиями
Свойство центрированности практически не является ограничением, так как при наличии постоянного регрессора среднее значение ошибки можно было бы включить в соответствующий коэффициент ( )
В ряде случаев сделанные предложения об ошибках будут дополняться свойствами нормальности – случайный вектор имеет нормальное распределение. Эту модель мы будем называть классической моделью с нормально распределительными ошибками.
Многомерное нормальное распределение задается своим вектором и матрицей ковариации – здесь она имеет вид , где 1 – единичная матрица. Если компоненты вектора корелированы, следовательно, автоматически независимы, следовательно, ошибки в модели образуют последовательность независимых одинаково нормально распределенных случайных величин N (0; ).
Если каждая из величин нормально распределена, то вектор , из них составленный, ну обязан быть нормально распределенным.
- Эконометрическая модель.
- Измерения в экономике. Шкалы измерений.
- Случайные события и случайные переменные. Распределение случайных величин.
- Статистические характеристики случайных величин и их свойства.
- Основные функции распределения.
- Оценки статистических характеристик и их желательные свойства.
- Проверка статистических гипотез.
- Критерий и критическая область.
- Мощность статистического критерия. Уровень значимости.
- Модель линейной регрессии.
- Оценивание параметров регрессии. Метод наименьших квадратов.
- Система нормальных уравнений мнк и ее решение.
- Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- Коэффициент детерминации и его свойства.
- Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- Ковариационная матрица оценок коэффициентов регрессии.
- Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- Неприменимость статистических тестов
- Замещающие переменные. Фиктивные переменные.
- Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- Методы борьбы с мультиколлинеарностью.
- Линеаризация регрессионных моделей путем логарифмических преобразований.
- Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- Модель с постоянными темпами роста (полулогарифмическая модель).
- Полиномиальная регрессия.
- Кривая Филипса
- Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- 1. Графический анализ остатков
- 2. Тест ранговой корреляции Спирмена
- 3. Тест Голдфелда-Квандта
- Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- Автокорреляция. Причины автокорреляции.
- Влияние автокорреляции на свойства оценок мнк.
- Тест серий. Статистика Дарбина – Уотсона.
- Способы противодействия автокорреляции.
- Стохастические объясняющие переменные. Последствия ошибок измерения.
- Инструментальные переменные.
- Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- Модели с распределенными лагами.
- Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- Ожидания экономических агентов и лаговые переменные в моделях
- Модели наивных и адаптивных ожиданий.
- Модель гиперинфляции Кейгана.
- 44. Модель гиперинфляции Кейгана
- Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- Структурная и приведённая форма. Идентифицируемость
- Примеры
- Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- Системы эконометрических уравнений с лаговыми переменными.
- Модель Кейнса.
- Модель Клейна.
- Матричная форма записи модели Клейна