logo search
лекции по моде

Моделирование равновесия в системах химических реакций

Значительная часть химических реакций, составляющих основное содержание технологических процессов в цветной металлургии, являются обратимыми. Рассмотрим пример обратимой химической реакции:

А + 2В 2С.

Равновесие в такой химической реакции достигается при определенных значениях активностей участвующих веществ. Если эти вещества находятся в растворе, а их концентрации невелики (разбавленные растворы), то с некоторым приближением вместо величин активностей можно использовать величины концентраций. Равновесие в химической реакции характеризуется величиной константы равновесия:

.

Величина константы равновесия связана с изменением энергии Гиббса и может быть рассчитана по термодинамическим данным участвующих веществ:

где ΔGT- изменение энергии Гиббса для данной химической реакции, Т – температура, R- универсальная газовая постоянная.

Рассчитав величину константы равновесия для химической реакции, идущей при заданной температуре, можно определить соотношение концентраций исходных веществ и продуктов, которое установится при достижении равновесия.

Несколько более сложно определить равновесный состав системы, в которой одновременно происходит несколько обратимых химических реакций. Рассмотрим следующий пример. Пусть имеется система обратимых химических реакций с участием веществ А, В, С и D. В данной системе вещество А последовательно и обратимо превращается в вещество С, предварительно образуя В. Возможен и параллельный путь: вещество А параллельно с образованием В разлагается с образованием D. При заданных условиях (температуре, давлении) в системе установится равновесие и будут достигнуты равновесные концентрации веществ.

Для расчета равновесных концентраций запишем выражения для констант равновесия всех реакций через равновесные концентрации:

А В ;

В С ;

А D ; .

Пусть в начальный момент отсутствуют промежуточные вещества В и С, а также конечный продукт D.

; СВ0=0; СС0=0; CD0=0.

Значения констант равновесия рассчитаем для каждой из реакций по термодинамическим данным: . Таким образом, величины констант равновесия будем считать известными величинами.

На единицу объёма данной системы СА0 – СА представляет собой количество израсходованных молей компонента А. В соответствии со стехиометрией химических реакций и законом сохранения вещества, убыль массы А равна сумме масс образующихся веществ B,C и D, что можно выразить уравнением:

СА0 – СА = CB + CC + CD.

Преобразуем уравнение к следующему виду:

CA0 = CA + CB + CC + CD,

И подставим в правую часть выражения для соответствующих концентраций веществ:

CA0 = CA + k1CA + k1k2CA + k3CA.

Сгруппируем однородные члены уравнения

CA0 = CA(1 + k1 + k1k2 + k3)

и получим выражение для равновесной концентрации СА

.

Равновесные концентрации других веществ легко определить, поскольку значения всех констант равновесия нам известны из предыдущего расчета, а выражения содержат CA.

При расчётах равновесий в системах химических реакций необходимо знать kр каждой реакции, начальный состав системы – это даёт возможность рассчитать равновесный состав системы.

Реальные задачи расчёта равновесного состава систем намного сложнее: уравнения в этих задачах нелинейны; требуется учесть, что компоненты, входящие в реакцию находятся в разных фазах; вместо концентраций корректно использовать значения активностей компонентов. Практический смысл расчёта равновесий в таких сложных системах сводится к тому, что расчётный равновесный состав системы является тем физико-химическим пределом, до которого может дойти реальный процесс, если для его осуществления отведено неограниченное время.