20. Ошибки первого и второго рода. Понятие о статистических критериях. Критическая область, критические точки
Проверка статистической гипотезы означает проверку согласования исходных выборочных данных с выдвинутой основной гипотезой. При этом возможно возникновение двух ситуаций – основная гипотеза может подтвердиться, а может и опровергнуться. Следовательно, при проверке статистических гипотез существует вероятность допустить ошибку, приняв или опровергнув верную гипотезу.
При проверке статистических гипотез можно допустить ошибки первого или второго рода
Ошибкой первого роданазывается ошибка, состоящая в опровержении верной гипотезы.
Ошибкой второго роданазывается ошибка, состоящая в принятии ложной гипотезы.
Уровнем значимостиа называется вероятность совершения ошибки первого рода.
Значение уровеня значимости а обычно задаётся близким к нулю (например, 0,05; 0,01;0,02 и т. д.), потому что чем меньше значение уровеня значимости, тем меньше вероятность совершения ошибки первого рода, состоящую в опровержении верной гипотезы Н0.
Вероятность совершения ошибки второго рода, т. е. принятия ложной гипотезы, обозначается β.
При проверке нулевой гипотезы Н0возможно возникновение следующих ситуаций:
Проверка справедливости сттатистическвх гипотез осуществляется с помощью различных статистических критериев.
Статистическим критериемназывается случайная величина, которая используется с целью проверки нулевой гипотезы.
Статистические критерии называются соответственно тому закону распределения, которому они подчиняются, т. е. F-критерий подчиняется распределению Фишера-Снедекора, χ2-критерий подчиняется χ2-распределению, Т-критерий подчиняется распределению Стьюдента, U-критерий подчиняется нормальному распределению.
Наблюдаемым значением статистического критерияназывается значение критерия, которое рассчитано по выборочной совокупности, подчиняющейся определённому закону распределения.
Множество всех возможных значений выбранного статистического критерия делится на два непересекающихся подмножества. Первое подмножество включает в себя те значения критерия, при которых основная гипотеза отвергается, а второе подмножество – те значения критерия, при которых основная гипотеза принимается.
Критической областьюназывается множество возможных значений статистического критерия, при которых основная гипотеза отвергается.
Областью принятия гипотезыили областью допустимых значений называется множество возможных значений статистического критерия, при которых основная гипотеза принимается.
Если наблюдаемое значение статистического критерия, рассчитанное по данным выборочной совокупности, принадлежит критической области, то основная гипотеза отвергается. Если наблюдаемое значение статистического критерия принадлежит области принятия гипотезы, то основная гипотеза принимается.
Критическими точками или квантиляминазываются точки, разграничивающие критическую область и область принятия гипотезы.
Критические области могут быть как односторонними, так и двусторонними.
- Ангелина Витальевна Яковлева
- 2. Основные математические предпосылки эконометрического моделирования. Закон больших чисел, неравенство и теорема Чебышева
- 3. Теоремы Бернулли и Ляпунова
- 4. Виды эконометрических моделей
- 5. Классификация эконометрических моделей
- 6. Этапы эконометрического моделирования. Проблемы, решаемые при эконометрическом исследовании
- 7. Сбор статистических данных для оценивания параметров эконометрической модели
- 8. Классификация видов эконометрических переменных и типов данных. Проблемы, связанные с данными
- 9. Общая модель парной (однофакторной) регрессии
- 10. Нормальная линейная модель парной (однофакторной) регрессии
- 11. Критерии оценки неизвестных коэффициентов модели регрессии
- 12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
- 13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
- 14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
- 15. Оценка дисперсии случайной ошибки модели регрессии
- 16. Состоятельность и несмещённость мнк-оценок
- 17. Эффективность мнк-оценок мнк
- 18. Характеристика качества модели регрессии
- 19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
- 20. Ошибки первого и второго рода. Понятие о статистических критериях. Критическая область, критические точки
- 21. Правосторонняя критическая область. Левосторонняя и двусторонняя критические области. Мощность критерия
- 22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
- 23. Проверка гипотезы о значимости парного коэффициента корреляции
- 24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов
- 25. Точечный и интервальный прогнозы для модели парной регрессии
- 26. Линейная модель множественной регрессии
- 27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
- 28. Линейная модель множественной регрессии стандартизированного масштаба
- 29. Соизмеримые показатели тесноты связи
- 30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
- 31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
- 32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
- 33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
- 34. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции
- 35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
- 36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
- 37. Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- 38. Методы устранения мультиколлинеарности
- 39. Модели регрессии, нелинейные по факторным переменным
- 40. Модели регрессии, нелинейные по оцениваемым коэффициентам
- 41. Модели регрессии с точками разрыва
- 42. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным
- 43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам
- 44. Методы нелинейного оценивания коэффициентов модели регрессии
- 45. Показатели корреляции и детерминации для нелинейных моделей регрессии
- 46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
- 47. Тесты Бокса-Кокса и Зарембеки выбора модели регрессии
- 48. Коэффициенты эластичности
- 49. Производственные функции
- 50. Двухфакторная производственная функция Кобба-Дугласа
- 51. Показатели двухфакторной производственной функции Кобба-Дугласа
- 52. Метод наименьших квадратов для двухфакторной производственной функции Кобба-Дугласа. Эффект от масштаба производства
- 53. Двухфакторная производственная функция Солоу
- 54. Многофакторные производственные функции
- 55. Модели бинарного выбора
- 56. Метод максимума правдоподобия
- 57. Гетероскедастичность остатков модели регрессии
- 58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
- 59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
- 60. Устранение гетероскедастичности остатков модели регрессии
- 61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- 62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- 63. Устранение автокорреляции остатков модели регрессии
- 64. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
- 65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
- 66. Доступный обобщённый метод наименьших квадратов. Взвешенный метод наименьших квадратов
- 67. Модели регрессии с переменной структурой. Фиктивные переменные
- 68. Тест Чоу
- 69. Спецификация переменных
- 70. Компоненты временного ряда
- 71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
- 72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности
- 73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций
- 74. Аналитический вид тренда
- 75. Адекватность трендовой модели
- 76. Сезонные и циклические компоненты временного ряда
- 77. Сезонные фиктивные переменные
- 78. Одномерный анализ Фурье
- 79. Методы фильтрации временного ряда
- 80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- 81. Стационарный процесс. Стационарный временной ряд. Белый шум
- 82. Линейные модели стационарного временного ряда
- 83. Модель авторегрессии и проинтегрированного скользящего среднего
- 84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
- 85. Критерий Дикки-Фуллера проверки наличия единичных корней
- 86. Цензурированные результативные переменные
- 87. Системы эконометрических уравнений
- 88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели
- 89. Условия идентификации структурной формы системы одновременных уравнений
- 90. Косвенный метод наименьших квадратов (кмнк)
- 91. Метод инструментальных переменных
- 92. Двухшаговый метод наименьших квадратов (дмнк)
- 93. Спецификация и приведенная форма эконометрических моделей в виде системы одновременных уравнений. Эконометрическая модель Самуэльсона-Хикса делового цикла экономики
- 94. Динамические эконометрические модели
- 95. Модели авторегрессии
- 96. Модели с распределённым лагом
- 97. Метод Алмон
- 98. Нелинейный метод наименьших квадратов. Метод Койка
- 99. Модель адаптивных ожиданий (мао)
- 100. Модель частичной (неполной) корректировки (мчк)