28. Линейная модель множественной регрессии стандартизированного масштаба
Помимо классического метода наименьших квадратов для определения неизвестных параметров линейной модели множественной регрессии β0…βm используется метод оценки данных параметров через β-коэффициенты (коэффициенты модели регрессии в стандартных масштабах).
Построение модели множественной регрессиив стандартизированном или нормированном масштабе означает, что все переменные, включенные в модель регрессии, стандартизируются с помощью специальных формул.
Посредством процесса стандартизации точкой отсчёта для каждой нормированной переменной устанавливается её среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается её среднеквадратическое отклонение σ.
Факторная переменная х переводится в стандартизированный масштаб по формуле:
где xij – значение переменной xjв i-том наблюдении;
G(xj) – среднеквадратическое отклонение факторной переменной xi;
Результативная переменная у переводится в стандартизированный масштаб по формуле:
где G(y) – среднеквадратическое отклонение результативной переменной у.
Если между исследуемыми переменными в исходном масштабе является линейной, то процесс стандартизации не нарушает этой связи, поэтому стандартизированные переменные будут связаны между собой линейно:
Неизвестные коэффициенты данной функции можно определить с помощью классического метода наименьших квадратов для линейной модели множественной регрессии. В этом случае минимизируется функционал F вида:
В результате минимизации данного функционала получим систему нормальных уравнений, переменными в которой будут являться парные коэффициенты корреляции между факторными и результативной переменной. Такой подход основывается на следующем равенстве:
Система нормальных уравнений для стандартизированной модели множественной регрессии имеет вид:
В связи с тем, что полученная система нормальных уравнений является квадратной (количество уравнений равняется количеству неизвестных переменных), то оценки коэффициентов
можно рассчитать с помощью метода Крамера, метода Гаусса или метода обратных матриц.
Рассчитанные из системы нормальных уравнений β-коэффициенты в стандартизированном масштабе необходимо перевести в масштаб исходных данных по формулам:
Рассмотрим метод Гаусса решения квадратных систем линейных уравнений. Суть данного метода заключается в том, что исходная квадратная система из n линейных уравнений с n неизвестными переменными преобразовывают к треугольному виду. Для этого в одном и уавнений системы оставляют все неизвестные переменные. В другом уравнении сокращают одну из неизвестных переменных для того, чтобы число неизвестных стало (n-1). В следующем уравнении сокращают две неизвестных переменных, чтобы число переменных стало (n-2). В результате данных преобразований исходная система уравнений примет треугольный вид, первое уравнение которой содержит все неизвестные, а последнее – только одну. В последнем уравнении системы остаётся (n-(n-1)) неизвестных переменных, т. е. одна неизвестная переменная, которая называется базисной. Дальнейшее решение сводится к выражению свободных (n-1) неизвестных переменных через базисную переменную и получению общего решения квадратной системы линейных уравнений.
- Ангелина Витальевна Яковлева
- 2. Основные математические предпосылки эконометрического моделирования. Закон больших чисел, неравенство и теорема Чебышева
- 3. Теоремы Бернулли и Ляпунова
- 4. Виды эконометрических моделей
- 5. Классификация эконометрических моделей
- 6. Этапы эконометрического моделирования. Проблемы, решаемые при эконометрическом исследовании
- 7. Сбор статистических данных для оценивания параметров эконометрической модели
- 8. Классификация видов эконометрических переменных и типов данных. Проблемы, связанные с данными
- 9. Общая модель парной (однофакторной) регрессии
- 10. Нормальная линейная модель парной (однофакторной) регрессии
- 11. Критерии оценки неизвестных коэффициентов модели регрессии
- 12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
- 13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
- 14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
- 15. Оценка дисперсии случайной ошибки модели регрессии
- 16. Состоятельность и несмещённость мнк-оценок
- 17. Эффективность мнк-оценок мнк
- 18. Характеристика качества модели регрессии
- 19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
- 20. Ошибки первого и второго рода. Понятие о статистических критериях. Критическая область, критические точки
- 21. Правосторонняя критическая область. Левосторонняя и двусторонняя критические области. Мощность критерия
- 22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
- 23. Проверка гипотезы о значимости парного коэффициента корреляции
- 24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов
- 25. Точечный и интервальный прогнозы для модели парной регрессии
- 26. Линейная модель множественной регрессии
- 27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
- 28. Линейная модель множественной регрессии стандартизированного масштаба
- 29. Соизмеримые показатели тесноты связи
- 30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
- 31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
- 32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
- 33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
- 34. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции
- 35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
- 36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
- 37. Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- 38. Методы устранения мультиколлинеарности
- 39. Модели регрессии, нелинейные по факторным переменным
- 40. Модели регрессии, нелинейные по оцениваемым коэффициентам
- 41. Модели регрессии с точками разрыва
- 42. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным
- 43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам
- 44. Методы нелинейного оценивания коэффициентов модели регрессии
- 45. Показатели корреляции и детерминации для нелинейных моделей регрессии
- 46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
- 47. Тесты Бокса-Кокса и Зарембеки выбора модели регрессии
- 48. Коэффициенты эластичности
- 49. Производственные функции
- 50. Двухфакторная производственная функция Кобба-Дугласа
- 51. Показатели двухфакторной производственной функции Кобба-Дугласа
- 52. Метод наименьших квадратов для двухфакторной производственной функции Кобба-Дугласа. Эффект от масштаба производства
- 53. Двухфакторная производственная функция Солоу
- 54. Многофакторные производственные функции
- 55. Модели бинарного выбора
- 56. Метод максимума правдоподобия
- 57. Гетероскедастичность остатков модели регрессии
- 58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
- 59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
- 60. Устранение гетероскедастичности остатков модели регрессии
- 61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- 62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- 63. Устранение автокорреляции остатков модели регрессии
- 64. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
- 65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
- 66. Доступный обобщённый метод наименьших квадратов. Взвешенный метод наименьших квадратов
- 67. Модели регрессии с переменной структурой. Фиктивные переменные
- 68. Тест Чоу
- 69. Спецификация переменных
- 70. Компоненты временного ряда
- 71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
- 72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности
- 73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций
- 74. Аналитический вид тренда
- 75. Адекватность трендовой модели
- 76. Сезонные и циклические компоненты временного ряда
- 77. Сезонные фиктивные переменные
- 78. Одномерный анализ Фурье
- 79. Методы фильтрации временного ряда
- 80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- 81. Стационарный процесс. Стационарный временной ряд. Белый шум
- 82. Линейные модели стационарного временного ряда
- 83. Модель авторегрессии и проинтегрированного скользящего среднего
- 84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
- 85. Критерий Дикки-Фуллера проверки наличия единичных корней
- 86. Цензурированные результативные переменные
- 87. Системы эконометрических уравнений
- 88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели
- 89. Условия идентификации структурной формы системы одновременных уравнений
- 90. Косвенный метод наименьших квадратов (кмнк)
- 91. Метод инструментальных переменных
- 92. Двухшаговый метод наименьших квадратов (дмнк)
- 93. Спецификация и приведенная форма эконометрических моделей в виде системы одновременных уравнений. Эконометрическая модель Самуэльсона-Хикса делового цикла экономики
- 94. Динамические эконометрические модели
- 95. Модели авторегрессии
- 96. Модели с распределённым лагом
- 97. Метод Алмон
- 98. Нелинейный метод наименьших квадратов. Метод Койка
- 99. Модель адаптивных ожиданий (мао)
- 100. Модель частичной (неполной) корректировки (мчк)