15. Оценка дисперсии случайной ошибки модели регрессии
При проведении регрессионного анализа основная трудность заключается в том, что генеральная дисперсия случайной ошибки является неизвестной величиной, что вызывает необходимость в расчёте её несмещённой выборочной оценки.
Несмещённой оценкой дисперсии(или исправленной дисперсией) случайной ошибки линейной модели парной регрессии называется величина, рассчитываемая по формуле:
где n – это объём выборочной совокупности;
еi– остатки регрессионной модели:
Для линейной модели множественной регрессии несмещённая оценка дисперсии случайной ошибки рассчитывается по формуле:
где k – число оцениваемых параметров модели регрессии.
Оценка матрицы ковариаций случайных ошибок Cov(ε) будет являться оценочная матрица ковариаций:
где In – единичная матрица.
Оценка дисперсии случайной ошибки модели регрессии распределена по ε2(хи-квадрат) закону распределения с (n-k-1) степенями свободы.
Для доказательства несмещённости оценки дисперсии случайной ошибки модели регрессии необходимо доказать справедливость равенства
Доказательство. Примем без доказательства справедливость следующих равенств:
где G2(ε) – генеральная дисперсия случайной ошибки;
S2(ε)– выборочная дисперсия случайной ошибки;
– выборочная оценка дисперсии случайной ошибки.
Тогда:
т. е.
что и требовалось доказать.
Следовательно, выборочная оценка дисперсии случайной ошибки
является несмещённой оценкой генеральной дисперсии случайной ошибки модели регрессии G2(ε).
При условии извлечения из генеральной совокупности нескольких выборок одинакового объёма n и при одинаковых значениях объясняющих переменных х, наблюдаемые значения зависимой переменной у будут случайным образом колебаться за счёт случайного характера случайной компоненты β. Отсюда можно сделать вывод, что будут варьироваться и зависеть от значений переменной у значения оценок коэффициентов регрессии и оценка дисперсии случайной ошибки модели регрессии.
Для иллюстрации данного утверждения докажем зависимость значения МНК-оценки
от величины случайной ошибки ε.
МНК-оценка коэффициента β1 модели регрессии определяется по формуле:
В связи с тем, что переменная у зависит от случайной компоненты ε (yi=β0+β1xi+εi), то ковариация между зависимой переменной у и независимой переменной х может быть представлена следующим образом:
Для дальнейших преобразования используются свойства ковариации:
1) ковариация между переменной х и константой С равна нулю: Cov(x,C)=0, C=const;
2) ковариация переменной х с самой собой равна дисперсии этой переменной: Cov(x,x)=G2(x).
Исходя из указанных свойств ковариации, справедливы следующие равенства:
Cov(x,β0)=0 (β0=const);
Cov(x, β1x)= β1*Cov(x,x)= β1*G2(x).
Следовательно, ковариация между зависимой и независимой переменными Cov(x,y) может быть записана как:
Cov(x,y)= β1G2(x)+Cov(x,ε).
В результате МНК-оценка коэффициента β1 модели регрессии примет вид:
Таким образом, МНК-оценка
может быть представлена как сумма двух компонент:
1) константы β1, т. е. истинного значения коэффициента;
2) случайной ошибки Cov(x,ε), вызывающей вариацию коэффициента модели регрессии.
Однако на практике подобное разложение МНК-оценки невозможно, потому что истинные значения коэффициентов модели регрессии и значения случайной ошибки являются неизвестными. Теоретически данное разложение можно использовать при изучении статистических свойств МНК-оценок.
Аналогично доказывается, что МНК-оценка
коэффициента модели регрессии и несмещённая оценка дисперсии случайной ошибки
могут быть представлены как сумма постоянной составляющей (константы) и случайной компоненты, зависящей от ошибки модели регрессии ε.
- Ангелина Витальевна Яковлева
- 2. Основные математические предпосылки эконометрического моделирования. Закон больших чисел, неравенство и теорема Чебышева
- 3. Теоремы Бернулли и Ляпунова
- 4. Виды эконометрических моделей
- 5. Классификация эконометрических моделей
- 6. Этапы эконометрического моделирования. Проблемы, решаемые при эконометрическом исследовании
- 7. Сбор статистических данных для оценивания параметров эконометрической модели
- 8. Классификация видов эконометрических переменных и типов данных. Проблемы, связанные с данными
- 9. Общая модель парной (однофакторной) регрессии
- 10. Нормальная линейная модель парной (однофакторной) регрессии
- 11. Критерии оценки неизвестных коэффициентов модели регрессии
- 12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
- 13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
- 14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
- 15. Оценка дисперсии случайной ошибки модели регрессии
- 16. Состоятельность и несмещённость мнк-оценок
- 17. Эффективность мнк-оценок мнк
- 18. Характеристика качества модели регрессии
- 19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
- 20. Ошибки первого и второго рода. Понятие о статистических критериях. Критическая область, критические точки
- 21. Правосторонняя критическая область. Левосторонняя и двусторонняя критические области. Мощность критерия
- 22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
- 23. Проверка гипотезы о значимости парного коэффициента корреляции
- 24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов
- 25. Точечный и интервальный прогнозы для модели парной регрессии
- 26. Линейная модель множественной регрессии
- 27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
- 28. Линейная модель множественной регрессии стандартизированного масштаба
- 29. Соизмеримые показатели тесноты связи
- 30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
- 31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
- 32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
- 33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
- 34. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции
- 35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
- 36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
- 37. Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- 38. Методы устранения мультиколлинеарности
- 39. Модели регрессии, нелинейные по факторным переменным
- 40. Модели регрессии, нелинейные по оцениваемым коэффициентам
- 41. Модели регрессии с точками разрыва
- 42. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным
- 43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам
- 44. Методы нелинейного оценивания коэффициентов модели регрессии
- 45. Показатели корреляции и детерминации для нелинейных моделей регрессии
- 46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
- 47. Тесты Бокса-Кокса и Зарембеки выбора модели регрессии
- 48. Коэффициенты эластичности
- 49. Производственные функции
- 50. Двухфакторная производственная функция Кобба-Дугласа
- 51. Показатели двухфакторной производственной функции Кобба-Дугласа
- 52. Метод наименьших квадратов для двухфакторной производственной функции Кобба-Дугласа. Эффект от масштаба производства
- 53. Двухфакторная производственная функция Солоу
- 54. Многофакторные производственные функции
- 55. Модели бинарного выбора
- 56. Метод максимума правдоподобия
- 57. Гетероскедастичность остатков модели регрессии
- 58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
- 59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
- 60. Устранение гетероскедастичности остатков модели регрессии
- 61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- 62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- 63. Устранение автокорреляции остатков модели регрессии
- 64. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
- 65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
- 66. Доступный обобщённый метод наименьших квадратов. Взвешенный метод наименьших квадратов
- 67. Модели регрессии с переменной структурой. Фиктивные переменные
- 68. Тест Чоу
- 69. Спецификация переменных
- 70. Компоненты временного ряда
- 71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
- 72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности
- 73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций
- 74. Аналитический вид тренда
- 75. Адекватность трендовой модели
- 76. Сезонные и циклические компоненты временного ряда
- 77. Сезонные фиктивные переменные
- 78. Одномерный анализ Фурье
- 79. Методы фильтрации временного ряда
- 80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- 81. Стационарный процесс. Стационарный временной ряд. Белый шум
- 82. Линейные модели стационарного временного ряда
- 83. Модель авторегрессии и проинтегрированного скользящего среднего
- 84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
- 85. Критерий Дикки-Фуллера проверки наличия единичных корней
- 86. Цензурированные результативные переменные
- 87. Системы эконометрических уравнений
- 88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели
- 89. Условия идентификации структурной формы системы одновременных уравнений
- 90. Косвенный метод наименьших квадратов (кмнк)
- 91. Метод инструментальных переменных
- 92. Двухшаговый метод наименьших квадратов (дмнк)
- 93. Спецификация и приведенная форма эконометрических моделей в виде системы одновременных уравнений. Эконометрическая модель Самуэльсона-Хикса делового цикла экономики
- 94. Динамические эконометрические модели
- 95. Модели авторегрессии
- 96. Модели с распределённым лагом
- 97. Метод Алмон
- 98. Нелинейный метод наименьших квадратов. Метод Койка
- 99. Модель адаптивных ожиданий (мао)
- 100. Модель частичной (неполной) корректировки (мчк)