logo
421990 / Ответы на экзаменационные билеты по эконометрике_Яковлева А

52. Метод наименьших квадратов для двухфакторной производственной функции Кобба-Дугласа. Эффект от масштаба производства

Двухфакторную производственную функцию Кобба-Дугласа f(K,L) можно представить в виде:

Q=A*Ka*Lβ,

где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);

K– объём основного капитала или основных фондов;

L– объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).

A,a,β– неизвестные числовые параметры производственной функции, которые подчиняются условиям:

1) 0≤а≤1;

2) 0≤β≤1;

3) A›0;

4) a+β=1.

Двухфакторная производственная функция Кобба-Дугласа относится к классу нелинейных по параметрам функций, которые можно свести к линейному виду.

Для того, чтобы привести двухфакторную производственную функцию Кобба-Дугласа к линейному виду, необходимо прологарифмировать обе части данной функции:

lnQj–lnLj=lna+β(lnKj–lnLj)+εj,,

где εj – случайная ошибка производственной функции

Для более наглядного представления данной модели регрессии воспользуемся методом замен:

yj= lnQj–lnLj;

b0=lna;

b1=β;

b=[ b0 b1]T;

xj= lnKj–lnLj;

δT(xj)=[0 xj].

В результате произведённых замен получим окончательный вид производственной функции Кобба-Дугласа, приведённой к линейной форме:

В данной функции неизвестным является только вектор коэффициентов b. Оценку данного вектора можно получить с помощью классического метода наименьших квадратов по формулам: 

где

– среднее арифметическое значение переменной х

– среднее арифметическое значение переменной у:

– среднее значение квадрата переменной х:

– среднее значение произведения переменных х и у:

После того, как будут получены МНК-оценки неизвестных коэффициентов b0 и b1 линеаризованной двухфакторной производственной функции Кобба-Дугласа, на их основе можно будет рассчитать оценки неизвестных параметров A,a,β исходной функции Кобба-Дугласа.

Эффектом от масштаба производства для двухфакторной производственной функцииназывается изменение объёма произведённой продукции при пропорциональном изменении затрат труда и капитала.

Пусть объём основного капитала изменился на величину nK, а объём трудовых затрат увеличился на величину nL. Рассчитаем величину изменения объёма производства для функции двухфакторной производственной Кобба-Дугласа:

Q(n)=A*(nKa)*(nLβ)= A*Ka*Lβ*na+β=Q*na+β.

Если справедливо неравенство (a+β)›1, то функция Кобба-Дугласа имеет возрастающий эффект от масштабов производства, т. е. с увеличением факторных переменных K и L в n раз, объём производства Q возрастает в na+β раз.

Если справедливо равенство (a+β)=1, то функция Кобба-Дугласа имеет фиксированный эффект от масштабов производства, т. е. с увеличением факторных переменных K и L в n раз, объём производства Q также возрастает в n раз.

Если справедливо неравенство (a+β)‹1, то функция Кобба-Дугласа имеет убывающий эффект от масштабов производства, т. е. с увеличением факторных переменных K и L в n раз, объём производства Q возрастает меньшими чем n темпами.