3.5.3.Последовательное соединение ячеек идеального вытеснения и идеального смешения.
На рис.3.5.4 представлена схема аппарата в виде последовательного соединения зон идеального вытеснения и зон идеального смешения.
Рис. 3.5.4. Схема комбинированной модели аппарата с последовательным соединением зоны идеального вытеснения и зоны идеального смешения при различной последовательности их расположения.
а) схема расположения аппаратов; б)- структурная схемы.
Из рисунка видно, что передаточная функция последовательно включенных звеньев равна произведению передаточных функций отдельных звеньев. Таким образом, общая передаточная функция комбинированной модели будет иметь следующий вид:
(3.5.8)
Математически передаточная функция будет одинакова, независимо от последовательности включения звеньев. При этом кривые отклика будут иметь одинаковый вид при замере выходной концентрации на выходе из всех звеньев. Для различия порядка включения звеньев нужно замерять концентрации в промежуточных точках соединения звеньев. На рис. 3.5.5 показаны кривые разгона этой модели, при различной последовательности их расположения. Следовательно, одинаковые кривые отклика аппаратов на ступенчатый сигнал ( или другого типа воздействие) – это еще не полная информация о гидродинамике потока.
а)
б)
Рис.3.5.5. Кривые отклика комбинированной модели идеального перемешивания (ИП) и идеального вытеснения (ИВ) при раличной последовательности их соединения
- Санкт-Петербургский государственный горный институт
- Раздел 3.2 .Модель идеального вытеснения. 40
- Раздел 3.4. Диффузионная модель 47
- Раздел 5. Синтез моделей технологических объектов на базе их гидродинамических моделей и уравнений химической кинетики. 125
- 1. Введение. Основные понятия систем
- 1.1.Очень большая система
- 1.2.Общая структура сложных объектов систем и основные этапы моделирования.
- 1.2.1.Формализованное описание.
- 1.2.2.Математическое описание.
- 1.2.3.Моделирующий алгоритм.
- 2. Общие принципы и этапы построения математических моделей систем.
- 2.1. Структурный анализ и структурный синтез сложных технологических систем
- 2.2. Обобщенная структурная модель металлургического процесса.
- 3. Модели структуры потоков для технологических объектов.
- 3.1 Модель идеального перемешивания.
- Применение преобразования Лапласа для анализа математических моделей.
- Раздел 3.2 .Модель идеального вытеснения.
- 3.3. Ячеечная модель аппарата
- Раздел 3.4. Диффузионная модель
- Стационарный метод определения критерия Пекле.
- 3.5.Комбинированные модели
- 3.5.1.Модель с застойной зоной
- 3.5.2.Модель с байпасным потоком.
- 3.5.3.Последовательное соединение ячеек идеального вытеснения и идеального смешения.
- 3.5.4.Гидродинамические модели многофазных потоков.
- 3.6.Методы определения параметров моделей структуры потоков.
- 3.6.1. Характеристики кривых отклика аппаратов на возмущения с помощью моментов.
- 3.6.2. Связь передаточных функций с моментами кривых
- 3.6.3.Ячеечная модель
- 3.6.4.Диффузионная однопараметрическая модель
- 3.6.5.Вычисление моментов по экспериментальным данным.
- 3.6.6.Определение параметров гидродинамических моделей по экспериментальным данным путем решения обратной задачи методами нелинейного программирования.
- 4. Кинетические модели для описания химических превращений.
- 4.1.Основные закономерности химической кинетики
- 4.2. Методы определения параметров кинетических моделей.
- 4.2.1.Определение констант скорости параллельных реакций:
- 4.3.Определение кинетических констант сложных реакций методами нелинейного программирования.
- 4.4. Кинетика гетерогенных процессов.
- 4.4.1 Типы гетерогенных процессов
- 4.4.2.Основные стадии гетерогенных процессов.
- 4.4.3.Определение области протекания гетерогенного процесса.
- Влияние формы межфазной поверхности раздела фаз на скорость гетерогенных процессов.
- Раздел 5. Синтез моделей технологических объектов на базе их гидродинамических моделей и уравнений химической кинетики.
- 5.1. Модель идеального смешения
- 5.2.Модель идеального вытеснения:
- 5.3. Диффузионная модель
- Литература