3.6.6.Определение параметров гидродинамических моделей по экспериментальным данным путем решения обратной задачи методами нелинейного программирования.
Для того, чтобы решить задачу определения параметров модели по экспериментальным данным применим метод поиска минимального рассогласования между результатами моделирования поведения объекта с заданными значениями параметров модели и результатами наблюдения за объектом при нанесении на его вход выбранного входного сигнала. Функцию рассогласования запишем в виде суммы квадратов отклонений. Решению поставленной задачи будет соответствовать нахождение минимума суммы квадратов отклонений по искомым параметрам модели.
Математическая формулировка поставленной задачи имеет следующий вид:
(3.6.42)
где:
NEXP -число экспериментов
NTk -число точек по времени для k-го эксперимента
-вектор параметров модели Мр ={P;Pi [Piн,Piв]};
pн -вектор нижних ограничений переменных
Рв -вектор верхних ограничений переменных
yk(ti) - экспериментальный выходной сигнал для k-го эксперимента в i-й точке.
Функция рассогласования при каждом значении вектора параметров модели формируется путем численного обращения выходных характеристик модели с учетом передаточной функции и реального входного сигнала. Таким образом получается набор расчетных значений уk(tik) в каждой i-й точке измерения k-го эксперимента. После формирования функции рассогласования, соответствующей заданному вектору параметров модели , производится поиск параметров модели, минимизирующих функцию рассогласования(). Для поиска минимума функции рассогласования используются различные методы нелинейного программирования, например, градиентный метод, алгоритм которого приведен ниже:
(3.6.43)
где:
pj – j-й компонент вектора параметров модели
i – номер шага поиска.
Таким образом, можно находить параметры сложных моделей потоков, в том числе и комбинированных, при использовании входных возмущающих сигналов произвольной формы и при проведении измерений в конечное время.
На основании изложенного подхода в Российском научном центре «Прикладная химия» была создана автоматизированная программная система RTD (Residence Time Distribution), позволяющая решать задачи синтеза сложных моделей структуры потоков из элементарных блоков и решать обратную задачу нахождения параметров моделей по экспериментальным данным.
Далее показаны результаты использования системы RTD для поиска параметров диффузионной модели – критерия Ре и среднего времени пребывания по экспериментальной кривой отклика на импульсное возмущение, поданное на вход аппарата в виде прямоугольного импульса малой продолжительности.
Рис.3.6.4 Сопоставление расчетных и экспериментальных кривых при начальном приближении. 1 экспериментальная кривая,2- расчетная. Начальное приближение Pe=1, t=7
(0)= 4,710-2
Рис.2. Сопоставление экспериментальных и расчетных кривых после поиска.
Pe=12, t=10, (0)=1,35410-7
Результаты статистического анализа:
Statistics Summary
===================
1. Adequacy Analysis
Sum of squares:
Residual = 1,354E-7
degree of freedom = 99
Regression = 0,1573
degree of freedom = 2
Percentage point = 0.05
Fisher (calc) = 1,162E6
Fisher (tab) = 3,088
degree of freedom = 2, 99
Student (tab) = 1,984
degree of freedom = 99
Model fits experimental data
- Санкт-Петербургский государственный горный институт
- Раздел 3.2 .Модель идеального вытеснения. 40
- Раздел 3.4. Диффузионная модель 47
- Раздел 5. Синтез моделей технологических объектов на базе их гидродинамических моделей и уравнений химической кинетики. 125
- 1. Введение. Основные понятия систем
- 1.1.Очень большая система
- 1.2.Общая структура сложных объектов систем и основные этапы моделирования.
- 1.2.1.Формализованное описание.
- 1.2.2.Математическое описание.
- 1.2.3.Моделирующий алгоритм.
- 2. Общие принципы и этапы построения математических моделей систем.
- 2.1. Структурный анализ и структурный синтез сложных технологических систем
- 2.2. Обобщенная структурная модель металлургического процесса.
- 3. Модели структуры потоков для технологических объектов.
- 3.1 Модель идеального перемешивания.
- Применение преобразования Лапласа для анализа математических моделей.
- Раздел 3.2 .Модель идеального вытеснения.
- 3.3. Ячеечная модель аппарата
- Раздел 3.4. Диффузионная модель
- Стационарный метод определения критерия Пекле.
- 3.5.Комбинированные модели
- 3.5.1.Модель с застойной зоной
- 3.5.2.Модель с байпасным потоком.
- 3.5.3.Последовательное соединение ячеек идеального вытеснения и идеального смешения.
- 3.5.4.Гидродинамические модели многофазных потоков.
- 3.6.Методы определения параметров моделей структуры потоков.
- 3.6.1. Характеристики кривых отклика аппаратов на возмущения с помощью моментов.
- 3.6.2. Связь передаточных функций с моментами кривых
- 3.6.3.Ячеечная модель
- 3.6.4.Диффузионная однопараметрическая модель
- 3.6.5.Вычисление моментов по экспериментальным данным.
- 3.6.6.Определение параметров гидродинамических моделей по экспериментальным данным путем решения обратной задачи методами нелинейного программирования.
- 4. Кинетические модели для описания химических превращений.
- 4.1.Основные закономерности химической кинетики
- 4.2. Методы определения параметров кинетических моделей.
- 4.2.1.Определение констант скорости параллельных реакций:
- 4.3.Определение кинетических констант сложных реакций методами нелинейного программирования.
- 4.4. Кинетика гетерогенных процессов.
- 4.4.1 Типы гетерогенных процессов
- 4.4.2.Основные стадии гетерогенных процессов.
- 4.4.3.Определение области протекания гетерогенного процесса.
- Влияние формы межфазной поверхности раздела фаз на скорость гетерогенных процессов.
- Раздел 5. Синтез моделей технологических объектов на базе их гидродинамических моделей и уравнений химической кинетики.
- 5.1. Модель идеального смешения
- 5.2.Модель идеального вытеснения:
- 5.3. Диффузионная модель
- Литература