1.2 Оцінка ризиків стратегій за показниками
Математичне сподівання і середнє значення.
Для позначення середнього арифметичного всієї сукупності використовується грецька буква м. Для випадкової величини, для якої визначено середнє значення, м виступає ймовірнісним середнім або математичним сподіванням випадкової величини. Якщо множина X є сукупністю випадкових чисел з імовірнісним середнім м, тоді для будь-якої вибірки хі з цієї сукупності м = E {xi} існує математичне сподівання цієї вибірки.
На практиці різниця між м і x, в тому, що м є типовою змінною, яку не можна спостерігати, тому що спостерігається швидше вибірка, а не вся генеральна сукупність. Тому, якщо вибірку представляти випадковим чином (в термінах теорії ймовірностей), тоді x, (але не м) можна трактувати як випадкову змінну, що має розподіл ймовірностей на вибірці (імовірнісний розподіл середнього). Обидві ці величини обчислюються одним і тим же способом:
Якщо X - випадкова змінна, тоді математичне сподівання X можна розглядати як середнє арифметичне значень у вимірах величини X, що повторюються. Це є проявом закону великих чисел. Тому вибіркове середнє використовується для оцінки невідомого математичного сподівання [2].
Рис 1.1 Математичне сподівання
Математичне сподівання говорить те, що найбільною ефективною є сиратегія S2.
Загальна дисперсія, семіваріація плюс, семіваріація мінус.
Дисперсія часто застосовується в теорії ймовірностей і математичній статистиці. Означає ступінь розсіювання навколо середнього значення випадкової величини. У статистичному розумінні дисперсія є середнє арифметичне із квадратів відхилень величин від їх середнього арифметичного. На практиці часто необхідно оцінити розсіювання можливих значень випадкової величини навколо її середнього значення, а також виявити та виміряти силу звязку між факторними та результативною ознаками [3]. З рисунку видно, що найкращою є стратегія S5.
Dj |
|
104,8333 |
|
180,1333 |
|
111,3667 |
|
109,5333 |
|
80,26667 |
Рис 1.2 Значення дисперсії для кожної стратегії
У неокласичній теорії економічного ризику виходять з того, що ризик повязаний лише з несприятливими для менеджера (інвестора) ефектами і для його оцінювання достатньо брати до уваги лише несприятливі відхилення від сподіваної величини. При цьому в якості міри ризику використовується семіваріація.
Показник семіваріації характеризує тільки додатні або тільки відємні відхилення від математичного сподівання. Додатня семіваріація розраховується за формулою:
Додатня семиваріація характеризує середній квадрат відхилення тих значень прибутку, які більше від середнього. Чим менша додатня семіваріація, тим менший ризик і більший шанс отримати більше ніж запланували. Необхідно взяти ті умови стратегії, які більші за математичне сподівання, відняти від них саме математичне сподівання. Потім різницю піднести до квадрату і помножити на ймовірність взятої умови, а потім скласти різниці умов з математичним сподіванням піднесеного до квадрату і помножене на ймовірність. Для інших стратегій розраховується аналогічно. Додатня семіваріація характеризує середній квадрат відхилення тих значень прибутку, які більше від середнього. Чим менша додатня семіваріація, тим менший ризик і більший шанс отримати більше ніж запланували. У нашому випадку має найменший ризик стратегія S2.
Відємна семіваріація розраховується за формулою:
Відємна семіваріація характеризує середній квадрат відхилення тих значень прибутку, які менші від середнього. Чим більша відємна семіваріація, тим більший ризик і менший шанс отримати прибуток. S5 має найменший ризик.
Табл. 1.2
Коефіцієнти семі варіації
Показник варіації.
Середні величини мають велике теоретичне і практичне значення, оскільки вони дають змогу однією величиною охарактеризувати сукупність однотипних явищ. Проте для всебічної характеристики таких явищ їх недостатньо. Щоб установити, як відрізняються сукупності, а також які межі коливання має ознака, необхідно обчислити варіацію. Варіацією називається коливання значень правової ознаки в окремих елементах сукупності.
Для вимірювання і кількісної характеристики варіації використовується система абсолютних і відносних показників: розмах варіації, середнє лінійне відхилення, середнє квадратичне відхилення і коефіцієнт варіації.
Коефіцієнт варіації це співвідношення між середнім квадратичним відхиленням стратегії та математичними сподіваннями. Чим менший коефіцієнт варіації, тим краща є стратегія з точки зору ефективності та ризикованості. Коефіцієнт варіації розраховується за формулою:
Рис 1.3 Значення коефіцієнта варіації для кожної стратегії
В нашому випадку стратегія S2 є найкращою з точки зору ефективності та ризикованості.
Середнє лінійне відхилення -- це арифметична середня з абсолютних значень відхилень ознаки окремих варіантів від їх середньої арифметичної. Середнє лінійне відхилення обчислюється за формулою:
Середнє квадратичне відхилення -- це корінь квадратний із середнього квадрата відхилень ознаки кожного варіанта від їх середньої арифметичної. Цей показник обчислюється за формулою:
За цими показниками, стратегія S5 є найкращою.
Рис 1.4 Значення середнього квадратичного відхилення
Оцінка ризиків стратегій за розмахом і графічним зображенням.
Розмах варіації -- це різниця між найбільшим і найменшим значеннями ознаки в сукупності. Залежно від того, в якому вигляді наведені первинні дані, техніка обчислення цього показника є різною: це може бути різниця між верхньою межею останнього інтервалу і нижньою межею першого інтервалу або різниця між середніми значеннями цих інтервалів.
Розмах варіації відображає тільки крайні значення ознаки, тому він є головним показником у тих випадках, коли варіанти повторюються один раз. В інших випадках розмах варіації застосовується для того, щоб одержати загальне уявлення про варіацію ознаки в усій сукупності. Розмах варіації показує ступінь оранжування (як дисперсія стандартного відхилення). Вона обчислюється за формулою:
Чим більший розмах варіації, тим більшою ризикованістю володіє стратегія і навпаки, чим менший розмах варіації, тим меншою ризикованістю володіє стратегія. S5 має найменший ризик за цим показником [4].
Рис 1.5 Розмах варіації для кожної стратегії
Інтервали ефективності для кожної стратегії виглядають так:
Табл. 1.3
Інтервали ефективності
S1 |
-22,0608 |
6,366667 |
34,79417 |
|||
S2 |
-25,597 |
11,66667 |
48,93038 |
|||
S3 |
-21,3999 |
7,9 |
37,19994 |
|||
S4 |
-21,8578 |
7,2 |
36,25777 |
|||
S5 |
-19,3413 |
5,533333 |
30,40797 |
Виходячи з оцінки ризиків стратегій за різними показниками, можна зробити висновки, що стратегія S2 є найкращою з точки зору ефективності та ризикованості.
- Вступ
- Розділ 1. Оцінка ефективності і ризикованості рішень провідного фахівця відділу матеріально-технічного забезпечення
- 1.1 Постановка задачі
- 2.1 Постановка задачі
- 1.2 Оцінка ризиків стратегій за показниками
- 1.3 Оцінка ризикованості стратегій за статистичними критеріями
- 2.2 Побудова економіко-математичної моделі стохастичного програмування для визначення оптимального плану випуску продукції на підприємствах
- 2.3 Визначення оптимально плану випуску продукції на підприємствах
- 2.4 Оцінка міри ризику щодо одержання максимального прибутку за загальним коефіцієнтом варіації і коефіцієнтом варіації по відємній семіваріації
- 3.1 Постановка задачі
- 3.2 Модель Шарпа. Оцінка систематичного ризику
- 3.3 Оптимізація портфеля цінних паперів за моделями Марковіца
- Розділ 4. Застосування теорії графів в інформаційній безпеці
- Висновки
- Державна служба України з надзвичайних ситуацій
- 11.2.9 Забезпечення інформаційної безпеки України в умовах надзвичайних ситуацій
- Завдання Державної комісії з надзвичайних ситуацій
- Система забезпечення інформаційної безпеки України
- Додатки Функціональна підсистема моз України з надзвичайних ситуацій, її організація і функціонування по періодах готовності до ліквідації наслідків надзвичайних ситуацій
- Функціональна підсистема моз України з надзвичайних ситуацій, її організація і функціонування по періодах готовності до ліквідації наслідків надзвичайних ситуацій
- Функціональна підсистема моз України з надзвичайних ситуацій, її організація і функціонування по періодах готовності до ліквідації наслідків надзвичайних ситуацій
- Керівник (директор, начальник) підрозділу (служби, управління, департаменту) з безпеки (фінансово-економічної, інформаційної)
- 5.4. Нагляд і контроль у галузі безпеки життєдіяльності
- 5.4. Нагляд і контроль у галузі безпеки життєдіяльності