logo search
421990 / Ответы на экзаменационные билеты по эконометрике_Яковлева А

43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам

Показательная функция вида

является нелинейной по коэффициенту β1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка εi мультипликативно связана с факторной переменной хi. Следовательно, для определения оценок неизвестных коэффициентов данной модели можно применить классический метод наименьших квадратов.

Данную модель можно привести к линейному виду с помощью логарифмирования:

Log yi=log β0+ хi* logβ1+ logεi.

Для более наглядного представления данной модели регрессии воспользуемся методом замен:

log yi=Yi;

log β0=A;

logβ1=B;

logεi=E.

В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:

Yi=A+Bхi+E.

Таким образом, мы будем применять метод наименьших квадратов не к исходной форме показательной функции, а к её преобразованной форме.

Для определения неизвестных коэффициентов линеаризованной формы показательной функции методом наименьших квадратов необходимо минимизировать сумму квадратов отклонений логарифмов наблюдаемых значений результативной переменной у от теоретических значений (значений, рассчитанных на основании модели регрессии), т. е. минимизировать функционал МНК вида:

Оценки неизвестных коэффициентов А и В линеаризованной формы показательной функции находятся при решении системы нормальных уравнений вида:

Данная система является системой нормальных уравнений относительно коэффициентов А и В для функции вида Yi=A+Bхi+E.

Однако основным недостатком полученных МНК-оценок неизвестных коэффициентов моделей регрессии, сводимых к линейному виду, является их смещённость.