7. Сбор статистических данных для оценивания параметров эконометрической модели
Первым этапом при проведении эконометрического исследования является сбор статистических данных об анализируемом объекте или процессе в виде конкретных значений эндогенных переменных и предопределенных переменных, входящих в спецификацию модели. Данная информация необходима для определения оценок неизвестных коэффициентов, входящих в эконометрическую модель.
Сбором статистических данныхназывается процесс получения исходных данных об элементах исследуемой совокупности и их свойствах, которые в дальнейшем становятся предметом статистической обработки и анализа.
В связи с многообразием статистических наблюдений, их принято классифицировать по следующим признаками:
1) по форме организации;
2) по времени регистрации фактов;
3) по признаку полноты охвата элементов изучаемой совокупности.
По форме организации выделяют отчётность и специально организованные статистические наблюдения.
Отчётностью называется основная организационная форма статистического наблюдения, которая состоит в сборе сведений от предприятий, учреждений и организаций о различных сторонах их деятельности на специальных бланках, называемых отчётами. В зависимости от продолжительности периода, относительно которого составляется отчётность, выделяют основную и текущую отчётность.
Основной отчётностьюназывается организационная форма статистического наблюдения, которая содержит наиболее широкий круг показателей, характеризующих все стороны деятельности предприятия. Основная отчётность также называется годовой.
Текущей отчётностьюназывается организационная форма статистического наблюдения, которая представляется предприятиями в течение года за различные по продолжительности промежутки времени.
По той причине, что существуют данные, которые принципиально невозможно получить на основе отчётности и данные, которые нецелесообразно включать в неё, используются специально организованные статистические наблюдения – различного рода обследования и переписи.
Статистическим обследованиемназывается такая форма специально организованного статистического наблюдения, при котором исследуемая совокупность явлений подвергается наблюдению в течение определённого периода времени.
Переписью называется такая форма специально организованного статистического наблюдения, при котором исследуемая совокупность явлений наблюдается на какую-либо дату.
По признаку времени регистрации фактов в эконометрике различают текущее (непрерывное) и дискретное (прерывное) статистическое наблюдение.
Текущим (непрерывным) статистическим наблюдениемназывается наблюдение, которое осуществляется во времени непрерывно. При этом отдельные явления, факты, события регистрируются по мере их возникновения.
Дискретным (прерывным) статистическим наблюдениемназывается наблюдение, при котором наблюдаемые явления, факты, события регистрируются через периоды времени, равной или неравной продолжительности. Дискретное наблюдение может быть периодическим и единовременным.
Периодическим наблюдениемназывается такая форма прерывного наблюдения, которая осуществляется через периоды времени равной продолжительности.
Единовременным наблюдениемназывается такая форма прерывного наблюдения, которое осуществляется через периоды времени неравной продолжительности или имеющие разовый характер.
В соответствии с признаком полноты охвата элементов изучаемой совокупности явлений, фактов, событий статистические наблюдения делятся на сплошные и несплошные наблюдения.
Сплошным наблюдением называется такая форма статистического наблюдения, при использовании которой учитываются все без исключения явления, факты, события, входящие в исследуемую совокупность.
Несплошным наблюдениемназывается такая форма статистического наблюдения, при использовании которой учитывается только некоторая часть явлений, фактов, событий, входящих в исследуемую совокупность.
Объективные причины использования несплошного наблюдения:
1) физическая невозможность или нецелесообразность осуществления сплошного наблюдения;
2) ограниченность исследователей во времени или средствах.
Выделяют несколько основных разновидностей несплошного наблюдения:
1) обследование основного массива характеризуется тем, что та часть исследуемой совокупности, которая подлежит наблюдению, устанавливается заранее. При этом отобранная часть единиц является преобладающей в объеме исследуемого объекта;
2) выборочное наблюдение характеризуется тем, что отбор той части единиц исследуемой совокупности, которая подлежит обследованию, производится строго в случайном порядке в соответствии с требованиями, установленными в теории вероятности;
3) анкетное наблюдение характеризуется тем, что лицам, от которых необходимо получить сведения, рассылают анкеты с просьбой заполнить их и возвратить обратно;
4) монографическое наблюдение характеризуется тем, что в составе исследуемой совокупности выделяются типические группы. В каждой подлежащей обследованию группе подвергают наблюдению одну (иногда две, три) типичную единицу. Установленные при наблюдении величины признаков рассматривают как типичные (средние) величины для группы в целом. Программа наблюдения при монографическом наблюдении обычно бывает достаточно широкой, т. е. охватывает большое число признаков.
- Ангелина Витальевна Яковлева
- 2. Основные математические предпосылки эконометрического моделирования. Закон больших чисел, неравенство и теорема Чебышева
- 3. Теоремы Бернулли и Ляпунова
- 4. Виды эконометрических моделей
- 5. Классификация эконометрических моделей
- 6. Этапы эконометрического моделирования. Проблемы, решаемые при эконометрическом исследовании
- 7. Сбор статистических данных для оценивания параметров эконометрической модели
- 8. Классификация видов эконометрических переменных и типов данных. Проблемы, связанные с данными
- 9. Общая модель парной (однофакторной) регрессии
- 10. Нормальная линейная модель парной (однофакторной) регрессии
- 11. Критерии оценки неизвестных коэффициентов модели регрессии
- 12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
- 13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
- 14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
- 15. Оценка дисперсии случайной ошибки модели регрессии
- 16. Состоятельность и несмещённость мнк-оценок
- 17. Эффективность мнк-оценок мнк
- 18. Характеристика качества модели регрессии
- 19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
- 20. Ошибки первого и второго рода. Понятие о статистических критериях. Критическая область, критические точки
- 21. Правосторонняя критическая область. Левосторонняя и двусторонняя критические области. Мощность критерия
- 22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
- 23. Проверка гипотезы о значимости парного коэффициента корреляции
- 24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов
- 25. Точечный и интервальный прогнозы для модели парной регрессии
- 26. Линейная модель множественной регрессии
- 27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
- 28. Линейная модель множественной регрессии стандартизированного масштаба
- 29. Соизмеримые показатели тесноты связи
- 30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
- 31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
- 32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
- 33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
- 34. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции
- 35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
- 36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
- 37. Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- 38. Методы устранения мультиколлинеарности
- 39. Модели регрессии, нелинейные по факторным переменным
- 40. Модели регрессии, нелинейные по оцениваемым коэффициентам
- 41. Модели регрессии с точками разрыва
- 42. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным
- 43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам
- 44. Методы нелинейного оценивания коэффициентов модели регрессии
- 45. Показатели корреляции и детерминации для нелинейных моделей регрессии
- 46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
- 47. Тесты Бокса-Кокса и Зарембеки выбора модели регрессии
- 48. Коэффициенты эластичности
- 49. Производственные функции
- 50. Двухфакторная производственная функция Кобба-Дугласа
- 51. Показатели двухфакторной производственной функции Кобба-Дугласа
- 52. Метод наименьших квадратов для двухфакторной производственной функции Кобба-Дугласа. Эффект от масштаба производства
- 53. Двухфакторная производственная функция Солоу
- 54. Многофакторные производственные функции
- 55. Модели бинарного выбора
- 56. Метод максимума правдоподобия
- 57. Гетероскедастичность остатков модели регрессии
- 58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
- 59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
- 60. Устранение гетероскедастичности остатков модели регрессии
- 61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- 62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- 63. Устранение автокорреляции остатков модели регрессии
- 64. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
- 65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
- 66. Доступный обобщённый метод наименьших квадратов. Взвешенный метод наименьших квадратов
- 67. Модели регрессии с переменной структурой. Фиктивные переменные
- 68. Тест Чоу
- 69. Спецификация переменных
- 70. Компоненты временного ряда
- 71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
- 72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности
- 73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций
- 74. Аналитический вид тренда
- 75. Адекватность трендовой модели
- 76. Сезонные и циклические компоненты временного ряда
- 77. Сезонные фиктивные переменные
- 78. Одномерный анализ Фурье
- 79. Методы фильтрации временного ряда
- 80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- 81. Стационарный процесс. Стационарный временной ряд. Белый шум
- 82. Линейные модели стационарного временного ряда
- 83. Модель авторегрессии и проинтегрированного скользящего среднего
- 84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
- 85. Критерий Дикки-Фуллера проверки наличия единичных корней
- 86. Цензурированные результативные переменные
- 87. Системы эконометрических уравнений
- 88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели
- 89. Условия идентификации структурной формы системы одновременных уравнений
- 90. Косвенный метод наименьших квадратов (кмнк)
- 91. Метод инструментальных переменных
- 92. Двухшаговый метод наименьших квадратов (дмнк)
- 93. Спецификация и приведенная форма эконометрических моделей в виде системы одновременных уравнений. Эконометрическая модель Самуэльсона-Хикса делового цикла экономики
- 94. Динамические эконометрические модели
- 95. Модели авторегрессии
- 96. Модели с распределённым лагом
- 97. Метод Алмон
- 98. Нелинейный метод наименьших квадратов. Метод Койка
- 99. Модель адаптивных ожиданий (мао)
- 100. Модель частичной (неполной) корректировки (мчк)