Косвенный метод наименьших квадратов (кмнк)
В системе одновременных уравнений каждое уравнение не может рассматриваться как самостоятельная часть системы, поэтому оценки неизвестных коэффициентов данных уравнений нельзя определить с помощью классического метода наименьших квадратов, т. к. нарушаются три основных условия применения этого метода:
а) между переменными системы уравнений существует одновременная зависимость, т. е. в первом уравнении системы y1 является функцией от y2, а во втором уравнении уже y2 является функцией от y1;
б) наличие проблема мультиколлинеарности, т.е. во втором уравнении системы y2 зависит от x1, а в других уравнениях обе переменные являются факторными;
в) случайные ошибки уравнения коррелируют с результативными переменными.
Следовательно, если неизвестные коэффициенты системы одновременных уравнений оценивать с помощью классического метода наименьших квадратов, то в результате мы получим смещённые и несостоятельные оценки.
Косвенный метод наименьших квадратов используется для получения оценок неизвестных коэффициентов системы одновременных уравнений, удовлетворяющих свойствам эффективности, несмещённости и состоятельности.
Косвенный метод наименьших квадратов применяется только в том случае, если структурная форма системы одновременных уравнений является точно идентифицированной.
Алгоритм метода наименьших квадратов реализуется в три этапа:
1) на основе структурной формы системы одновременных уравнений составляется её приведённая форма, все параметры которой выражены через структурные коэффициенты;
2) приведённые коэффициенты каждого уравнения оцениваются обычным методом наименьших квадратов;
3) на основе оценок приведённых коэффициентов системы одновременных уравнений определяются оценки структурных коэффициентов через приведённые уравнения.
Рассмотрим применение косвенного метода наименьших квадратов на примере структурной формы модели спроса и предложения:
Было доказано, что структурная форма модели спроса и предложения является точно идентифицированной, поэтому для определения оценок неизвестных параметров данной модели можно применить косвенный метод наименьших квадратов.
1) запишем приведённую форму модели спроса и предложения:
2) определим оценки коэффициентов приведённой формы модели спроса и предложения с помощью обычного метода наименьших квадратов. Тогда система нормальных уравнений для определения коэффициентов первого уравнения приведённой формы модели будет иметь вид:
Система нормальных уравнений для определения коэффициентов второго уравнения приведённой формы модели записывается аналогично. Решением данных систем нормальных уравнений будут численные оценки приведённых коэффициентов A1,A2,A3 и B1,B2,B3;
Для определения по оценкам приведённых коэффициентов получить оценки структурных коэффициентов первого уравнения, необходимо из второго приведённого уравнения выразить переменную It и подставить полученное выражение в первое уравнение приведённой формы модели. Для определения оценок структурных коэффициентов второго уравнения, необходимо из второго приведённого уравнения выразить переменную Pt–1 и подставить полученное выражение в первое уравнение приведённой формы модели.
- Коэффициент частной корреляции.
- Частная корреляция.
- 6.1. Элементы временного ряда
- Автокорреляция
- Выявление структуры временного ряда
- Моделирование тенденции
- 6.5. Изучение взаимосвязи переменных по данным временных рядов
- 6.6. Критерий Дарбина-Уотсона
- Напоминаем предпосылки регрессионного анализа:
- Оценка уравнения регрессии.
- Предпосылки к проведению регрессионного анализа
- Условия применения и ограничения кра.
- Проблема оценивания линейной связи экономических переменных.
- Модель парной линейной регрессии.
- Точечный и интервальный прогнозы для модели парной регрессии
- Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- 38. Методы устранения мультиколлинеарности
- Двухфакторная производственная функция Кобба-Дугласа
- 51. Показатели двухфакторной производственной функции Кобба-Дугласа
- Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- 62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- Компоненты временного ряда
- Косвенный метод наименьших квадратов (кмнк)