Анализ состояния финансовых рынков на основе методов нелинейной динамики

дипломная работа

2.4 Проверка нормальности

Первое подробное изучение дневных прибылей было предпринято Фама (1965), который нашел, что прибыли имеют отрицательную асимметрию [23]: большее количество наблюдений было на левом (отрицательном) хвосте, чем на правом. Кроме того, хвосты были толще, и пик около среднего значения был выше, чем предсказывалось нормальным распределением, то есть имел место так называемый «лептоэксцесс». Это же отметил Шарп в своем учебнике 1970 года «Теория портфеля и рынки капитала» [24]. Когда Шарп сравнил годовые прибыли с нормальным распределением, он заметил, что «у нормального распределения вероятность сильных выбросов очень мала. Однако на практике такие экстремальные величины появляются довольно часто».

Позже Тернер и Вейгель (1990) [25] провели более глубокое изучение волатильности, используя дневной индекс рейтинговой компании Стандард энд Пур (S&Р) с 1928 года по 1990 год - результаты оказались похожими. В таблице 2 представлены данные этого исследования. Авторы нашли, что «распределения дневной прибыли по индексам Доу-Джонса и S&Р имеют отрицательную асимметрию и большую плотность в окрестности среднего значения, а также в области очень больших и очень малых прибылей, - если сравнивать это распределение с нормальным».

Таблица 2. Основные характеристики частотного распределения дневных прибылей по индексу S&Р 500, с января 1928 года по декабрь 1989 года

На рисунке 4 показано частотное распределение прибылей, которое иллюстрирует это явление. График представляет пятидневную логарифмическую первую разность в ценах по данным S&Р с января 1928 года по декабрь 1989 года. Эти изменения центрированы и нормированы, то есть имеют нулевое среднее и единичное стандартное отклонение. Здесь же представлено частотное распределение гауссовских случайных чисел. Высокий пик и толстые хвосты, которые заметны в таблице 2, ясно видны на графике. Помимо того, значения прибыли встречаются при 4 и 5 сигма на обоих хвостах.

Рисунок 4. Частотное распределение пятидневных прибылей по индексу S&Р 500, январь 1928 - декабрь 1989 года: нормальное распределение и действительные прибыли

Рисунок 5 показывает разности ординат двух кривых на рисунке 4. Отрицательную асимметрию можно увидеть при соответствующем подсчете на трех стандартных отклонениях ниже среднего значения. Вероятность событий на рынке при 3-х сигма примерно в два раза выше, чем для гауссовских случайных чисел.

Рисунок 5. Разность частот: S&Р 500 пятидневные прибыли - нормальное распределение

Также в своем анализе квартальных прибылей по данным S&Р с 1946 года по 1988 год Фридман и Лейбсон (1989) [26] указывают, что «22.6% однодневных падений биржевых цен 19 октября 1987 года были уникальным явлением, но в масштабе квартального временного окна эпизод 4 квартала 1987 года, оказывался в ряду нескольких других периодов необычайно больших оживлений или крахов». Эти авторы замечают, что в дополнение к лептоэксцессу «большие движения чаще являются крахами, чем взлетами» и значительный лептоэксцесс «появляется вне зависимости от выбранного периода».

Эти исследования с очевидностью говорят о том, что прибыли американских рынков капитала не следуют нормальному распределению. Но если рыночные прибыли не являются нормально распределенными, то тогда множество методов статистического анализа, в частности, такие способы диагностики как коэффициенты корреляции, t-статистики, серьезно подрывают к себе доверие, поскольку могут давать ошибочные результаты. Применение случайных блужданий к рыночным ценам также становится сомнительным.

Стерж (1989) [27] в дополнительном исследовании финансовых фьючерсных цен на государственные казначейские облигации, казначейские налоговые сертификаты и евродолларовые контракты также нашел лептоэксцессные распределения. Он заметил, что «очень большие (три или больше стандартных отклонения) изменения цен могут ожидаться в два-три раза чаще, чем предсказано нормальностью».

Делись добром ;)