1.1 Основные понятия и критерии теории игр
ТЕОРИЯ ИГР - термин представляющий собой русский эквивалент английского theory of games и используется для обозначения комплекса математических моделей конфликтных ситуаций и способов их разрешения, основы которого разработаны математиком Дж. фон Нейманом. Формализованное описание игры задается списком ее участников (игроков) и множества стратегий для каждого из них. В результате выбора стратегий игроками образуется ситуация (состояние) игры. Интересы игроков характеризуются функциями выигрыша или отношениями предпочтения на множестве допустимых ситуаций. Таким образом, в понятии игры моделируются два основных факта:
а) каждый участник конфликта лишь частично контролирует ситуацию;
б) каждый участник имеет свои интересы.
Нормативное направление в теории игр занимается исследованием вопросов, какие состояния игры считать справедливыми, равновесными, оптимальными, а также анализом свойств и способов достижения таких состояний. Наибольшие успехи достигнуты в теории игр двух игроков с противоположными интересами (антагонистические игры), где нормативный и дескриптивный аспекты конфликтной ситуации хорошо совмещаются в понятии седловой точки (максимина) состояния, в котором каждый игрок получает максимум выигрыша по контролируемым им переменным в условиях, когда этот выигрыш минимален по переменные, контролируемым другим игроком. Теория антагонистических игр находит применение в военных приложениях: в вопросах стратегии и тактики. Оказалось также, что антагонистические игры во многих аспектах эквивалентны задачам программирования математического. Игровая методология является основой перспективного направления математической статистики, трактующего статистические задачи как игры исследователя с природой. Анализ игр многих лиц существенно затруднен из-за сложности вопроса о механизмах формирования и действия коалиций. Моделирование коалиционных взаимодействий как антагонистических игр привело к. теории кооперативных игр, которая представляет интерес лишь с математической точки зрения. В теории бескоалиционных игр многих лиц имеются два направления, имеющие нетривиальное приложение к социально-экономической проблематике.
Обычно теорию игр определяют как раздел математики для изучения конфликтных ситуаций. Это значит, что можно выработать оптимальные правила поведения каждой стороны, участвующей в разрешении конфликтной ситуации.
Теория игр -- математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две (и более) сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу -- в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.
Теория игр -- это раздел прикладной математики. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках -- социологии, политологии, психологии, этике и других. Начиная с 1970-х годов, её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам. Теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна "Теория игр и экономическое поведение" (англ. Theory of Games and Economic Behavior).
Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша, нобелевского лауреата по экономике и учёного в области теории игр; а в 2001 по мотивам книги был снят фильм "Игры разума". Некоторые американские телевизионные шоу, например, "Friend or Foe?", "Alias" или "NUMB3RS", периодически ссылаются на теорию в своих эпизодах.
Нематематический вариант теории игр представлен в работах Томаса Шеллинга, нобелевского лауреата по экономике 2005 г.
Нобелевскими лауреатами по экономике за достижения в области теории игр стали: Роберт Ауманн, Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Томас Шеллинг.
В экономике, например, оказался недостаточным аппарат математического анализа, занимающийся определением экстремумов функций. Появилась необходимость изучения так называемых оптимальных минимаксных и максиминных решений. Следовательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений.
Одно из них игры с непротивоположными интересами и фиксированной последовательностью ходов, моделирование принятия решений в организационных системах на основе принципа гарантированного результата.
Согласно этому принципу, каждый игрок при своем ходе выбирает стратегию, исходя из предположения, что следующие за ним участники будут максимизировать свои выигрыши в условиях, определенных всеми предыдущими выборами. Другое направление связано с понятием равновесия (Нейман-Нэш) ситуации, устойчивой в том смысле, что никакой игрок не может увеличить свой выигрыш за счет только собственных действий. Это понятие, в частности, лежит в основе концепции социально-экономического равновесия, согласно которой в равновесии все социальные в и экономические агенты добиваются максимально возможного удовлетворения своих интересов в рамках определенных ограничений, причем предложение соответствует спросу по всем видам рассматриваемых благ и труда. В целом идеи теории игр имеют несомненное стимулирующее значение как для внутриматематических, так и для социально-экономических исследований, но в последнем случае собственные ее концепции слишком абстрактны и должны дополняться более конкретными конструкциями в каждом приложении.
Игра - упрощенная формализованная модель реальной конфликтной ситуации. Математически формализация означает, что выработаны определенные правила действия сторон в процессе игры: варианты действия сторон; исход игры при данном варианте действия; объем информации каждой стороны о поведении все других сторон.
Одну играющую сторону при исследовании операций может представлять коллектив, преследующий некоторую общую цель. Однако разные члены коллектива могут быть по-разному информированы об обстановке проведения игры.
Выигрыш или проигрыш сторон оценивается численно, другие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценить количественно.
Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. Существуют игровые системы управления, если процесс управления в них рассматривается как игра.
Таблица 1.1.
Игрок 2 Игрок 1 |
В1 |
В2 |
… |
Вn |
i |
|
А1 |
а11 |
а12 |
… |
а1n |
1 |
|
А2 |
a21 |
a22 |
… |
а2n |
2 |
|
… |
… |
… |
… |
… |
… |
|
Аm |
аm1 |
аm2 |
… |
аmn |
m |
|
j |
1 |
2 |
… |
n |
В данной матрице элементы аij - значения выигрышей игрока 1 - могут означать математическое ожидание выигрыша (среднее значение), если выигрыш является случайной величиной. Величины i,и j, - соответственно минимальные значения элементов аij по строкам и максимальные - по столбцам. Их содержательный смысл будет отражен ниже.
В теории игр не существует установившейся классификации видов игр. Однако по определенным критериям некоторые виды можно выделить.
Количество игроков. Если в игре участвуют две стороны, то ее называют игрой двух лиц. Если число сторон больше двух, ее относят к игре п игроков. Наибольший интерес вызывают игры двух лиц. Они и математически более глубоко проработаны, и в практических приложениях имеют наиболее обширную библиографию.
Количество стратегий игры. По этому критерию игры делятся на конечные и бесконечные. В конечной игре каждый из игроков имеет конечное число возможных стратегий. Если хотя бы один из игроков имеет бесконечное число возможных стратегий, игра является бесконечной.
Взаимоотношения сторон. Согласно данному критерию игры делятся на кооперативные, коалиционные и бескоалиционные. Если игроки не имеют права вступать в соглашения, образовывать коалиции, то такая игра относится к бескоалиционным; если игроки могут вступать в соглашения, создавать коалиции - коалиционной. Кооперативная игра - это игра, в которой заранее определены коалиции.
Характер выигрышей. Этот критерий позволяет классифицировать игры с нулевой и с ненулевой суммой. Игра с нулевой суммой предусматривает условие: "сумма выигрышей всех игроков в каждой партии равна нулю". Игры двух игроков с нулевой суммой относят к классу антагонистических. Естественно, выигрыш одного игрока при этом равен проигрышу другого. Примерами игр с нулевой суммой служат многие экономические задачи. В них общий капитал всех игроков перераспределяется между игроками, но не меняется. К играм с ненулевой суммой также можно отнести большое количество экономических задач. Например, в результате торговых взаимоотношений стран, участвующих в игре, все участники могут оказаться в выигрыше. Игра, в которой нужно вносить взнос за право участия в ней, является игрой с ненулевой суммой.
Вид функции выигрышей. По этому критерию игры подразделяются на матричные, биматричные, непрерывные, выпуклые, и т.д. Поясним суть некоторых из них.
Матричная игра - конечная игра двух игроков с нулевой суммой. В общем случае ее платежная матрица является прямоугольной (см. табл. 1). Номер строки матрицы соответствует номеру стратегии, применяемой игроком 1. Номер столбца соответствует номеру стратегии игрока 2. Выигрыш игрока 1 является элементом матрицы. Выигрыш игрока 2 равен проигрышу игрока 1. Матричные игры всегда имеют решения в смешанных стратегиях. Они могут быть решены методами линейного программирования.
Биматричная игра - конечная игра двух игроков с ненулевой суммой. Выигрыши каждого игрока задаются своей матрицей, в которой строка соответствует стратегии игрока 1, а столбец - стратегии игрока 2. Однако элемент первой матрицы показывает выигрыш игрока 1, а элемент второй матрицы - выигрыш игрока 2. Для биматричных игр так же, как и для матричных, разработана теория оптимального поведения игроков.
Если функция выигрышей каждого игрока в зависимости от стратегий является непрерывной, игра считается непрерывной. Если функция выигрышей выпуклая, то и игра - выпуклая.
Если функция выигрышей может быть разделена на сумму произведений функций одного аргумента, то игра относится к сепарабельной.
Количество ходов. Согласно этому критерию игры можно разделить на одношаговые и многошаговые. Одношаговые игры заканчиваются после одного хода каждого игрока. Так, в матричной игре после одного хода каждого из игроков происходит распределение выигрышей. Многошаговые игры бывают позиционными, стохастическими, дифференциальными и др.
Информированность сторон. По данному критерию различают игры с полной и неполной информацией. Если каждый игрок на каждом ходу игры знает все ранее примененные другими игроками на предыдущих ходах стратегии, такая игра определяется как игра с полной информацией. Если игроку не все стратегии предыдущих ходов других игроков известны, то игра классифицируется как игра с неполной информацией. Мы далее убедимся, что игра с полной информацией имеет решение. Решением будет седловая точка при чистых стратегиях.
Получив некоторое представление о существующих подходах к классификации игр, можно остановиться на оценках игры.
Рассмотрим матричную игру, представленную матрицей выигрышей mn, где число строк i = а число столбцов j = (см. табл.1). Применим принцип получения максимального гарантированного результата при наихудших условиях. Игрок 1 стремится принять такую стратегию, которая должна обеспечить максимальный проигрыш игрока 2. Соответственно игрок 2 стремится принять стратегию, обеспечивающую минимальный выигрыш игрока 1. Рассмотрим оба этих подхода.
Подход игрока 1. Он должен получить максимальный гарантированный результат при наихудших условиях. Значит, при выборе отвечающей этим условиям своей чистой стратегии он должен выбрать гарантированный результат в наихудших условиях, т.е. наименьшее значение своего выигрыша aij, которое обозначим
.i = . (1.1)
Чтобы этот гарантированный эффект в наихудших условиях был максимальным, нужно из всех .i, выбрать наибольшее значение. Обозначим его и назовем чистой нижней ценой игры (максимин):
. = (1.2)
Таким образом, максиминной стратегии отвечает строка матрицы, которой соответствует элемент а. Какие бы стратегии ни применял игрок 2, игрок 1 максиминной чистой стратегией гарантировал себе выигрыш не меньший, чем а. Таково оптимальное поведение игрока 1.
Подход игрока 2. Своими оптимальными стратегиями он стремится уменьшить выигрыш игрока 1, поэтому при каждой j -й чистой стратегии он отыскивает величину своего максимального проигрыша
в каждом j -м столбце, т.е. определяет максимальный выигрыш игрока 1, если игрок 2 применит j -ю чистую стратегию. Из всех своих п 7-х чистых стратегий он отыскивает такую, при которой игрок 1 получит минимальный выигрыш, т.е. определяет чистую верхнюю цену игры (минимакс):
Чистая верхняя цена игры показывает, какой максимальный выигрыш может гарантировать игрок 1, применяя свои чистые стратегии, - выигрыш, не меньший чем а. Игрок 2 за счет указанного выше выбора своих чистых стратегий не допустит, чтобы игрок 1 мог получить выигрыш, больший чем в.
Чистая цена игры н - цена данной игры, если нижняя и верхняя ее цены совпадают. Это тот самый случай, когда игра называется игрой с седловой точкой.