6.1. Элементы временного ряда
Как нам уже известно из курса статистики, временной ряд (он же ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Показателя временного ряда называются уровнями ряда динамики. Каждый уровень ряда динамики формируется под воздействием целого комплекса факторов.
Во-первых, большинство временных рядов имеет тенденцию. Тенденция может быть возрастающей или убывающей. Она отражает совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на результат, однако их совокупное воздействие, их равнодействующая, формирует положительную или отрицательную тенденцию.
Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, то есть изменяться по временам года (цены на овощи ниже летом и осенью, а зимой и весной выше; интенсивность использования техники и трудовых ресурсов в сельском хозяйстве выше в весеннее – летний период). Циклические колебания могут носить и долговременный характер. Так, советский ученый-экономист 20-ых годов с мировым именем Кондратьев Н.Д. исследовал природу кризисов в капиталистическом (рыночном) производстве. Он доказал, что кризис представляет собой лишь одну фазу целого капиталистического цикла (подъем – кризис – депрессия), то есть капиталистическая экономика развивается волнообразно и, зная закон этого развития, можно предсказывать кризисные периоды в экономике. Его капитальные исследования в области закономерностей экономической динамики принесли Кондратьеву мировую известность и, и во всем мире эти циклы известны под именем «циклы Кондратьева». Понятно, что для выявления таких закономерностей требовалась информация за очень длительный период времени.
Некоторые временные ряды не содержат тенденции и циклической компоненты, а их уровни образуются как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты.
Очевидно, что реальные данные временного ряда могут складываться при одновременном влиянии всех трех перечисленных компонент. Итак, факторы уровней временного ряда по характеру воздействия можно условно разбить на три группы:
факторы, формирующие тенденцию ряда (Т);
факторы, формирующие циклические колебания ряда (S);
случайные факторы (E).
В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма компонент, называется аддитивной. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной.
Основные задачи эконометрического исследования временных рядов сводятся:
к выявлению и количественному определению перечисленных компонент с тем, чтобы использовать полученную модель для прогнозирования будущих значений ряда;
к построению модели взаимосвязи двух или более временных рядов.
- Коэффициент частной корреляции.
- Частная корреляция.
- 6.1. Элементы временного ряда
- Автокорреляция
- Выявление структуры временного ряда
- Моделирование тенденции
- 6.5. Изучение взаимосвязи переменных по данным временных рядов
- 6.6. Критерий Дарбина-Уотсона
- Напоминаем предпосылки регрессионного анализа:
- Оценка уравнения регрессии.
- Предпосылки к проведению регрессионного анализа
- Условия применения и ограничения кра.
- Проблема оценивания линейной связи экономических переменных.
- Модель парной линейной регрессии.
- Точечный и интервальный прогнозы для модели парной регрессии
- Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- 38. Методы устранения мультиколлинеарности
- Двухфакторная производственная функция Кобба-Дугласа
- 51. Показатели двухфакторной производственной функции Кобба-Дугласа
- Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- 62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- Компоненты временного ряда
- Косвенный метод наименьших квадратов (кмнк)