А) случай независимых выборок
Статистика критерия для случая несвязанных, независимых выборок равна:
(1)
где , — средние арифметические в экспериментальной и контрольной группах,
- стандартная ошибка разности средних арифметических. Находится из формулы:
, (2)
где n1 и n2 соответственно величины первой и второй выборки.
Если n1=n2, то стандартная ошибка разности средних арифметических будет считаться по формуле:
(3)
где n величина выборки.
Подсчет числа степеней свободы осуществляется по формуле:
k = n1 + n2 – 2. (4)
При численном равенстве выборок k = 2n - 2.
Далее необходимо сравнить полученное значение tэмп с теоретическим значением t—распределения Стьюдента (см. приложение к учебникам статистики). Если tэмп<tкрит, то гипотеза H0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.
- Парная регрессия
- Линейные и нелинейные модели регрессии
- Определение параметров в моделях парной регрессии
- Линейный коэффициент корреляции
- Критерий Стьюдента (t-критерий)
- А) случай независимых выборок
- Случай связанных (парных) выборок
- Множественная регрессия
- Изучение сезонных колебаний
- Логит и пробит модели
- Основные стадии экспертного опроса
- 1.3 Модель адаптивных ожиданий
- 1.4 Модель исправления ошибок
- 5.4.МетодМонте-Карло(методстатистическихиспытаний).
- Портфель Марковица минимального риска