Основные стадии экспертного опроса
Выделяют следующие стадии проведения экспертного опроса:
1) формулировка Лицом, Принимающим Решения, цели экспертного опроса;
2) подбор ЛПР основного состава Рабочей группы;
3) разработка РГ и утверждение у ЛПР технического задания на проведение экспертного опроса;
4) разработка РГ подробного сценария проведения сбора и анализа экспертных мнений (оценок), включая как конкретный вид экспертной информации ( слова, условные градации, числа, ранжировки, разбиения или иные виды объектов нечисловой природы) и конкретные методы анализа этой информации (вычисление медианы Кемени, статистический анализ люсианов и иные методы статистики объектов нечисловой природы и других разделов прикладной статистики);
5) подбор экспертов в соответствии с их компетентностью;
6) формирование экспертной комиссии (целесообразно заключение договоров с экспертами об условиях их работы и ее оплаты, утверждение ЛПР состава экспертной комиссии);
7) проведение сбора экспертной информации;
8) анализ экспертной информации;
9) при наличии нескольких туров - повторение двух предыдущих этапов;
10) интерпретация полученных результатов и подготовка заключения для ЛПР;
11) официальное окончание деятельности РГ.
.
Можно выделить две взаимосвязанные ветви - математические модели поведения экспертов и математико-статистические методы анализа экспертных оценок.
Модели поведения экспертов обычно основаны на предположении, что эксперты оценивают интересующий ЛПР параметр (например, ранжировку образцов изделий по конкурентоспособности) с некоторыми ошибками, т.е. эксперта рассматривают как особого рода прибор с присущими ему метрологическими характеристиками. Оценки группы экспертов рассматривают как совокупность независимых одинаково распределенных случайных величин со значениями в соответствующем пространстве объектов числовой или нечисловой природы. Обычно предполагается, что эксперт чаще выбирает правильное решение (т.е. адекватное реальности), чем неправильное. В математических моделях это выражается в том, что плотность распределения случайной величины - ответа эксперта монотонно убывает с увеличением расстояния от центра распределения - истинного значения параметра.
28.Моделичастичногоприспособления(адаптивныхожиданий,исправленияошибок
Модель частичного приспособления
Запишем эту модель так:
(9)
- желаемый уровень величины Y (desired)
- скорость приспособления.
Если μ=1, то приспособление происходит мгновенно, тогда всегда равняется Y. Если исключить из второго уравнения наблюдаемую величину , то можно привести модель к виду, удобному для оценивания:
(10)
Это есть модель ADL (1,1) с коэффициентом при текущем значении X, равном 0, т.е. это тоже частный случай ADL.
- Парная регрессия
- Линейные и нелинейные модели регрессии
- Определение параметров в моделях парной регрессии
- Линейный коэффициент корреляции
- Критерий Стьюдента (t-критерий)
- А) случай независимых выборок
- Случай связанных (парных) выборок
- Множественная регрессия
- Изучение сезонных колебаний
- Логит и пробит модели
- Основные стадии экспертного опроса
- 1.3 Модель адаптивных ожиданий
- 1.4 Модель исправления ошибок
- 5.4.МетодМонте-Карло(методстатистическихиспытаний).
- Портфель Марковица минимального риска