logo
Эконометрика лекция

7. Оценки статистической значимости. После того как найдено уравнение регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения в целом. Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера и служит для выяснения того, что полученное значение коэффициента детерминации неслучайно, т.е. соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

В парной линейной регрессии проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Для проверки значимости уравнения регрессии в целом используют F-критерий Фишера. В случае парной линейной регрессии значимость модели регрессии проверяется по следующей формуле:

,

где m – количество объясняющих факторных признаков, т.е. х.

Наблюдаемые значения сравниваются с табличными.

,

где α – уровень значимости, соответствующий доверительному интервалу;

k1 = m

k2 = n–m–1

Если при заданном уровне значимости Fнабл > Fкрит, то модель считается значимой, гипотеза о случайной природе оцениваемых характеристик отрицается и признается их статистическая значимость и надежность.

Если Fнабл < Fкрит, то коэффициент детерминации считается незначимым, что дает основание считать, что влияние объясняющей переменной х в модели несущественно, а, следовательно, общее качество модели невысокое.

Стандартная ошибка оценки уравнения регрессии. Хотя МНК дает нам линию регрессии, которая обеспечивает минимум вариации, не все наблюдения совпадают с линией регрессии. Поэтому необходима статистическая мера вариации фактических значений у от предсказанных значений . Мера вариации относительно линии регрессии называется стандартной ошибкой оценки.

Стандартная ошибка оценки определяется как:

,

где у – фактические значения зависимой переменной для заданных значений независимой переменной;

– теоретические / предсказанные значения зависимой переменной для заданных значений независимой переменной;

m – количество объясняющих переменных х.

Данный коэффициент характеризует меру вариации фактических данных вокруг линии регрессии.

Проверка значимости параметров. Кроме того, проверяется значимость параметров регрессии. Проверка значимости параметров отдельных коэффициентов регрессии проводится по t-критерию Стьюдента путем проверки гипотезы о равенстве нулю каждого коэффициента регрессии. При этом выясняют, не являются ли полученные значения параметров результатом действия случайных величин.

Значимость коэффициентов регрессии проверяется по следующим формулам. Для коэффициента b:

,

где Sb – стандартная ошибка коэффициента b, которая в свою очередь определяется как:

.

Для коэффициента а аналогично:

,

где Sa – стандартная ошибка свободного члена а, также находится по формуле:

.

Расчетные значения t-критерия сравниваются с табличным значением критерия , где k = n–m–1 степеням свободы и соответствующем уровне значимости α.

Если расчетное значение t-критерия превосходит его табличное значение, то параметр признается значимым, т.е. не является случайно найденным.

8. Прогнозируемое значение переменной у и доверительные интервалы прогноза. Точечный прогноз заключается в получении прогнозного значения Y*, которое определяется путем подстановки в уравнение регрессии соответствующего прогнозного значения X*:

.

Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большей надежностью.

Интервальный прогноз заключается в построении доверительного интервала прогноза, т.е. нижней и верхней – минимально и максимально возможных границ интервала, содержащего точную величину для прогнозного значения Y* с заданной вероятностью, т.е.:

Уmin < Y* < Ymax.

Доверительные интервалы прогноза определяются по следующим формулам:

,

где – стандартная ошибка предсказаний для парной регрессии.

Доверительный интервал для коэффициентов регрессии определяются как:

и

.

Так как коэффициент регрессии в эконометрических исследованиях имеет четкую экономическую интерпретацию, то доверительные границы интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -10b40 – такого рода запись указывает на то, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего быть не может. Тогда параметр принимается равным нулю.