Лекция 2. Корреляционно-регрессионный анализ. Парная регрессия
1. Сущность корреляционно-регрессионного анализа и его задачи.
2. Определение регрессии и ее виды.
3. Особенности спецификации модели. Причины существования случайной величины.
4. Методы выбора парной регрессии.
5. Метод наименьших квадратов.
6. Показатели измерения тесноты и силы связи.
7. Оценки статистической значимости.
8. Прогнозируемое значение переменной у и доверительные интервалы прогноза.
1. Сущность корреляционно-регрессионного анализа и его задачи. Экономические явления, будучи весьма разнообразными, характеризуются множеством признаков, отражающих определенные свойства этих процессов и явлений и подверженных взаимообусловленным изменениям. В одних случаях зависимость между признаками оказывается очень тесной (например, часовая выработка работника и его заработная плата), а в других случаях такая связь не выражена вовсе или крайне слаба (например, пол студентов и их успеваемость). Чем теснее связь между этими признаками, тем точнее принимаемые решения.
Различают два типа зависимостей между явлениями и их признаками:
-
функциональная (детерминированная, причинная) зависимость. Задается в виде формулы, которая каждому значению одной переменной ставит в соответствие строго определенное значение другой переменной (воздействием случайных факторов при этом пренебрегают). Иными словами, функциональная зависимость – это связь, при которой каждому значению независимой переменной х соответствует точно определенное значение зависимой переменной у. В экономике функциональные связи между переменными являются исключениями из общего правила;
-
статистическая (стохастическая, недетерминированная) зависимость – это связь переменных, на которую накладывается воздействие случайных факторов, т.е. это связь, при которой каждому значению независимой переменной х соответствует множество значений зависимой переменной у, причем заранее неизвестно, какое именно значение примет у.
Частным случаем статистической зависимости является корреляционная зависимость.
Корреляционная зависимость – это связь, при которой каждому значению независимой переменной х соответствует определенное математическое ожидание (среднее значение) зависимой переменной у.
Корреляционная зависимость является «неполной» зависимостью, которая проявляется не в каждом отдельном случае, а только в средних величинах при достаточно большом числе случаев. Например, известно, что повышение квалификации работника ведет к росту производительности труда. Это утверждение часто подтверждается на практике, но не означает, что у двух и более работников одного разряда / уровня, занятых аналогичным процессом, будет одинаковая производительность труда.
Корреляционная зависимость исследуется с помощью методы корреляционного и регрессионного анализа.
Корреляционно-регрессионный анализ позволяет установить тесноту, направление связи и форму этой связи между переменными, т.е. ее аналитическое выражение.
Основная задача корреляционного анализа состоит в количественном определении тесноты связи между двумя признаками при парной связи и между результативными и несколькими факторными признаками при многофакторной связи и статистической оценке надежности установленной связи.
2. Определение регрессии и ее виды. Регрессионный анализ является основным математико-статистическим инструментом в эконометрике. Регрессией принято называть зависимость среднего значения какой-либо величины (y) от некоторой другой величины или от нескольких величин (xi).
В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.
Простая (парная) регрессия представляет собой модель, где среднее значение зависимой (объясняемой) переменной у рассматривается как функция одной независимой (объясняющей) переменной х. В неявном виде парная регрессия – это модель вида:
.
В явном виде:
,
где a и b – оценки коэффициентов регрессии.
Множественная регрессия представляет собой модель, где среднее значение зависимой (объясняемой) переменной у рассматривается как функция нескольких независимых (объясняющих) переменных х1, х2, … хn. В неявном виде парная регрессия – это модель вида:
.
В явном виде:
,
где a и b1, b2, bn – оценки коэффициентов регрессии.
Примером такой модели может служить зависимость заработной платы работника от его возраста, образования, квалификации, стажа, отрасли и т.д.
Относительно формы зависимости различают:
-
линейную регрессию;
-
нелинейную регрессию, предполагающую существование нелинейных соотношений между факторами, выражающихся соответствующей нелинейной функцией. Зачастую нелинейные по внешнему виду модели могут быть приведены к линейному виду, что позволяет их относить к классу линейных.
3. Особенности спецификации модели. Причины существования случайной величины. Любое эконометрическое исследование начинается со спецификации модели, т.е. с формулировки вида модели, исходя из соответствующей теории связи между переменными.
Прежде всего из всего круга факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы. Парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. Уравнение простой регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений. В уравнении регрессии корреляционная связь представляется в виде функциональной зависимости, выраженной соответствующей математической функцией. Практически в каждом отдельном случае величина у складывается из двух слагаемых:
,
где у – фактическое значение результативного признака;
– теоретическое значении результативного признака, найденное исходя из уравнения регрессии;
– случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.
Случайная величина называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения. Присутствие в модели случайной величины порождено тремя источниками:
-
спецификацией модели,
-
выборочным характером исходных данных,
-
особенностями измерения переменных.
К ошибкам спецификации будут относиться не только неправильный выбор той или иной математической функции, но и недоучет в уравнении регрессии какого-либо существенного фактора (использование парной регрессии вместо множественной).
Наряду с ошибками спецификации могут иметь место ошибки выборки, поскольку исследователь чаще всего имеет дело с выборочными данными при установлении закономерностей связи между признаками. Ошибки выборки имеют место и в силу неоднородности данных в исходной статистической совокупности, что, как правило, бывает при изучении экономических процессов. Если совокупность неоднородна, то уравнение регрессии не имеет практического смысла. Для получения хорошего результата обычно исключают из совокупности единицы с аномальными значениями исследуемых признаков. И в этом случае результаты регрессии представляют собой выборочные характеристики. Исходных данных
Однако наибольшую опасность в практическом использовании методов регрессии представляют ошибки измерения. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки – увеличивая объем исходных данных, то ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками.
4. Методы выбора парной регрессии. Предполагая, что ошибки измерения сведены к минимуму, основное внимание в эконометрических исследованиях отводится ошибкам спецификации модели. В парной регрессии выбор вида математической функции может быть осуществлен тремя методами:
-
графическим;
-
аналитическим, т.е. исходя из теории изучаемой взаимосвязи;
-
экспериментальным.
При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на поле корреляции. Основные типы кривых, используемых при количественной оценке связей
Класс математических функций для описания связи двух переменных достаточно широк, также используются и другие типы кривых.
Аналитический метод выбор типа уравнения регрессии основан на изучении материальной природы связи исследуемых признаков, а также визуальной оценке характера связи. Т.е. если мы говорим о кривой Лаффера, показывающей зависимость между прогрессивностью налогообложения и доходами бюджета, то речь идет о параболической кривой, а в микроанализе изокванты представляют собой гиперболы.
- Лекция 2. Корреляционно-регрессионный анализ. Парная регрессия
- 5. Метод наименьших квадратов. Линейная регрессия находит широкое применение в эконометрике в виду четкой экономической интерпретации ее параметров и сводится к нахождению уравнения вида:
- 6. Показатели измерения тесноты и силы связи. Уравнение регрессии всегда дополняется показателем тесноты связи.
- Коэффициенты эластичности для ряда математических функций
- 7. Оценки статистической значимости. После того как найдено уравнение регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.