2.1.3. Условие проявления и направление процессов переноса
Если система находится в равновесии, то макроскопического переноса субстанции не происходит. Тепловое движение молекул по всем направлениям равновероятны.
Равновесию в однофазной (гомогенной) системе соответствует равенство значений макроскопических величин во всех ее точках:
(x, y, z, t) = const,
T(x ,y, z, t) = const, (2.5.)
(x, y, z, t) = const,
где - химический потенциал i-го компонента.
Условием равновесия в двухфазной системе является равенство этих величин в фазах:
,
, (2.6.)
Условия гидродинамического, теплового и концентрационного равновесия:
= const, - гидромеханическое равновесие;
T = const, - тепловое равновесие; (2.7.)
= const, - концентрационное равновесие;
где - дифференциальный оператор.
Условием проявления процессов переноса является неравновесность системы для отдельных видов субстанций. Направленность процесса переноса определяется самопроизвольным стремлением системы к состоянию равновесия, т.е. выравниванию скорости, температуры и химических потенциалов компонентов системы. Причем, внутри фазы тепло переносится в направлении понижения T, импульс – в направлении уменьшения , масса - в направлении уменьшения концентрации. Неоднородности указанных величин является необходимыми условиями протекания процессов переноса, их называют движущимися силами.
Для того чтобы осуществить процесс, систему необходимо вывести из состояния равновесия, оказывая внешнее воздействие.
- Н.Х. Зиннатуллин
- 1. Введение
- Предмет и задачи дисциплины
- Классификация основных процессов химической технологии
- Гипотеза сплошности среды
- Режимы движения жидких сред
- Силы и напряжения, действующие в жидких средах
- I – часть
- 2.1.2. Механизмы переноса субстанций
- Молекулярный механизм
- Конвективный механизм
- Турбулентный механизм
- Рис 2.2. Схема осреднения скорости
- 2.1.3. Условие проявления и направление процессов переноса
- 2.1.4. Уравнения переноса субстанций
- 2.1.4.1. Перенос массы Молекулярный механизм переноса массы
- Конвективный механизм переноса массы
- Турбулентный механизм переноса массы
- 2.1.4.2. Перенос энергии
- Молекулярный механизм переноса энергии
- Конвективный механизм переноса энергии
- Конвективный перенос импульса
- Турбулентный перенос импульса
- 2.1.5. Законы сохранения субстанций
- 2.1.5.2. Закон сохранения энергии
- Интегральная форма закона сохранения энергии (первый закон термодинамики)
- Локальная форма закона сохранения энергии
- 2.1.5.3. Закон сохранения импульса
- Интегральная форма закона сохранения импульса
- Локальная форма закона сохранения импульса
- 2.1.6. Исчерпывающее описание процессов переноса
- 2.1.6.1. Условия однозначности
- 2.1.6.2. Поля скорости, давления, температуры и концентраций Пограничные слои
- 2.1.6.3. Аналогия процессов переноса
- 2.2 Межфазный перенос субстанции
- 2.2.1. Уравнения массо-, тепло- и импульсоотдачи
- 2.2.1.1. Локальная форма уравнений
- Рис 2.5. Перенос субстанций по оси z
- 2.2.1.2. Интегральная форма уравнений
- Рис 2.6. Изменение температуры в ядре потока по длине аппарата для различных моделей
- 2.2.2 Уравнения массо-, тепло- и импульсопередачи
- 2.2.2.1 Локальная форма уравнений
- Рис 2.7. Схема межфазного переноса субстанций.
- Рис 2.8. Профили химических потенциалов, температуры и скорости в процессах переноса субстанций через границу раздела фаз
- 2.2.2.2 Интегральная форма уравнений
- 2.3. Моделирование технологических процессов
- 2.3.1. Математическое моделирование
- 2.3.2. Физическое моделирование
- 2.3.2.1. Теория подобия
- 2.3.2.2. Подобие гидромеханических процессов
- 2.3.2.3 Подобие тепловых процессов
- 2.3.2.4 Подобие массообменных процессов
- 2.3.3 Определение коэффициентов массо-, тепло-, импульсоотдачи
- 2.3.4 Аналогия процессов массо-, тепло-. Импульсоотдачи
- 2.3.5 Проблема масштабного перехода для промышленных аппаратов
- 2.3.6 Понятие о сопряженном физическом и математическом моделировании
- 2.4 Гидродинамическая структура потоков
- 2.4.1 Характеристика структуры потока
- 2.4.2 Математическое моделирование структуры потоков
- 2.4.2.1 Модель идеального вытеснения (мив)
- 2.4.2.2 Модель идеального смешения (мис)
- 2.4.2.3 Ячеечная модель (мя)
- 2.4.2.4 Диффузионная модель (мд)
- 2.4.3 Идентификация модели
- Оглавление