3. Корреляционно-регрессионный анализ
Для выявления наличия связи, ее характера и направления в статистике используют методы: приведения параллельных данных; аналитических группировок; графический, корреляции.
Корреляционно-регрессионный анализ включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ).
Одним из методов корреляционно-регрессионного анализа является метод парной корреляции, рассматривающий влияние вариации факторного признака x на результативный y. Аналитическая связь между ними описывается уравнениями:
прямой
параболы
гиперболы и т.д.
Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит требование минимальности сумм квадратов отклонений эмпирических данных yi от выравненных (теоретических) yxi
Система нормальных уравнений для нахождения параметров линейной парной регрессии имеет вид:
Для оценки типичности параметров уравнения регрессии используется t-критерий Стьюдента. При этом вычисляются фактические значения t-критерия для параметров. Полученные фактические значения сравниваются с критическим, которые получают по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы.
Полученные при анализе корреляционной связи параметры уравнения регрессии признаются типичными, если t фактическое больше t критического.
По приведенным на типичность параметрам уравнения регрессии производится синтезирование (построение) математической модели связи. При этом параметры примененной в анализе математической функции получают соответствующие количественные значения: один параметр показывает усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов, а другой параметр - на сколько изменяется в среднем значение результативного признака при изменении факторного на единицу его собственного измерения.
Проверка практической значимости синтезированных в корреляционно-регрессионном анализе математических моделей осуществляется посредством показателей тесноты связи между признаками x и y.
Для статистической оценки тесноты связи применяются следующие показатели вариации:
1. общая дисперсия результативного признака, отображающая общее влияние всех факторов;
2. факторная дисперсия результативного признака, отображающая вариацию y только от воздействия изучаемого фактора, которая характеризует отклонение выровненных значений yx от их общей средней величины y;
3. остаточная дисперсия, отображающая вариацию результативного признака y от всех прочих, кроме x факторов, которая характеризует отклонение эмпирических (фактических) значений результативного признака yi от их выровненных значений yxi.
Соотношение между факторной и общей дисперсиями характеризует меру тесноты связи между признаками x и y
Этот показатель называется индексом детерминации (причинности). Он выражает долю факторной дисперсии, т.е. характеризует, какая часть общей вариации результативного признака y объясняется изменением факторного признака x. На основе предыдущей формулы определяется индекс корреляции R:
Используя правило сложения дисперсий, можно вычислить индекс корреляции.
При прямолинейной форме связи показатель тесноты связи определяется по формуле линейного коэффициента корреляции r:
Для оценки значимости коэффициента корреляции r применяется t-критерий Стьюдента с учетом заданного уровня значимости и числа степеней свободы k.
Если , то величина коэффициента корреляции признается существенной.
Для оценки значимости индекса корреляции R применяется F-критерий Фишера. Фактическое значение критерия FR определяется по формуле:
где m - число параметров уравнения регрессии.
Величина FR сравнивается с критическим значением FK, которое определяется по таблице F - критерия с учетом принятого уровня значимости и числа степеней свободы k1=m-1 и k2=n-m.
Если FR> FK, то величина индекса корреляции признается существенной.
По степени тесноты связи различают количественные критерии оценки тесноты связи.
Величина коэффициента корреляции |
Характер связи |
|
до 0,3 |
практически отсутствует |
|
0,3-0,5 |
слабая |
|
0,5-0,7 |
умеренная |
|
0,7-1,0 |
сильная |
С целью расширения возможностей экономического анализа используются частные коэффициенты эластичности:
Он показывает, на сколько процентов в среднем изменится значение результативного признака при изменении факторного на 1%.
- Глава 2. Сущность корреляционного, регрессивного анализа…………..20
- Поэтапный множественный регрессивный анализ
- 5.1. Виды корреляционно-регрессивного анализа
- 4. Анализ эффективности использование энергии на объекте
- 2.12 Статистико-экономический анализ деятельности предприятий строительства
- Регрессивный анализ данных
- 30. Содержание корреляционно-регрессивного анализа и его этапы
- 2.2. Метод анализа и диагностики деятельности предприятия
- 23. Метод регрессивного анализа