IV. Заключение
Итак, в заключение хочется отметить, что понятия «корреляция» и «регрессии» тесно связаны между собой. В экономических исследованиях корреляционный и регрессионный анализ нередко объединяют в один - корреляционно-регрессионный анализ. Подразумевается, что в результате такого анализа будет построена регрессионная зависимость (т.е. проведен регрессионный анализ) и рассчитаны коэффициенты ее тесноты и значимости (т.е. проведен корреляционный анализ).
Практическая реализация корреляционно-регрессионного анализа включает следующие этапы:
1. Постановка задачи - определяются показатели, зависимость между которыми подлежит оценке, формулируется экономически осмысленная и приемлемая гипотеза о зависимости между ними;
2. Формирование перечня факторов, их логический анализ - выбирается оптимальное число наиболее существенных переменных факторов, влияющих на зависимый показатель;
3. Спецификация функции регрессии - дается конкретная формулировка гипотезы о форме зависимости;
4. Оценка функции регрессии и проверка адекватности модели - определяются числовые значения параметров регрессии, вычисляется ряд показателей, характеризующих точность проведенного анализа;
5. Экономическая интерпретация - результаты анализа сравниваются с гипотезами, сформулированными на первом этапе исследования, оценивается их правдоподобие с экономической точки зрения, делаются аналитические выводы.
Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.
Анализ отчетности не замыкается на специфических, разработанных в его рамках приемах, но активно использует самые разнообразные методики, творчески переработав их применительно к собственным требованиям. В частности, использование корреляционно-регрессионного анализа позволяет более эффективно решать задачи прогнозирования доходов организации и планирования ее будущего финансового состояния, в связи с чем, данный математический метод рекомендуется использовать более активно.