logo
Анализ модели на чувствительность

2.1 Анализ чувствительности оптимального решения

Анализ чувствительности выполняется уже после получения оптимального решения задачи линейного программирования (ЛП). Его цель -- определить, приведет ли изменение коэффициентов исходной задачи к изменению текущего оптимального решения, и если да, то, как эффективно найти новое оптимальное решение (если оно существует).

В общем случае изменение коэффициентов исходной задачи может привести к одной из следующих четырех ситуаций.

Текущее базисное решение остается неизменным.

Текущее решение становится недопустимым.

Текущее решение становится неоптимальным.

Текущее решение становится неоптимальным и недопустимым.

Во второй ситуации можно использовать двойственный симплекс-метод для восстановления допустимости решения. В третьей ситуации мы используем прямой симплекс-метод для получения нового оптимального решения. В четвертой для получения нового оптимального и допустимого решения следует воспользоваться как прямым, так и двойственным симплекс-методом.

Для объяснения различных процедур анализа чувствительности используем модель фабрики игрушек TOYCO. Фабрика TOYCO собирает три вида детских игрушек: модели поездов, грузовиков и легковых автомобилей. Сборка модели каждого вида требует последовательного применения трех операций. В задаче необходимо определить объемы производства каждого вида игрушек, максимизирующие общий доход. Для удобства изложения материала повторим формулировки прямой и двойственной задач (табл.2.1).

Таблица 2.1.

Прямая задача

Двойственная задача

Максимизировать при ограничениях

, (операция 1)

, (операция 2)

, (операция 3)

.

Минимизировать

при ограничениях

,

,

,

.

Оптимальное решение

Оптимальное решение

Приведем симплекс-таблицу, содержащую оптимальное решение прямой задачи.

Таблица 2.2.

Базис Решение