logo search
Анализ Финляндии

Дисперсионный анализ

 

df

SS

MS

F

Значимость F

Регрессия

9

57879,05

6431,005

672,7762

1,04E-12

Остаток

10

95,58908

9,558908

Итого

19

57974,64

 

 

 

 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

165,9428

211,6086

0,7842

0,4511

-305,5506

637,4362

x5

-0,0649

0,0381

-1,7027

0,1195

-0,1498

0,0200

x8

0,0003

0,0008

0,3936

0,7021

-0,0015

0,0022

x9

-0,2459

0,5524

-0,4451

0,6657

-1,4767

0,9849

x13

1,2764

0,5491

2,3247

0,0424

0,0530

2,4997

x14

-0,8366

0,5861

-1,4275

0,1839

-2,1424

0,4692

x15

5,5956

3,7738

1,4828

0,1690

-2,8128

14,0041

x16

10,2395

9,9726

1,0268

0,3287

-11,9809

32,4598

x17

0,0674

0,0649

1,0384

0,3236

-0,0772

0,2121

x19

2,7203

5,1439

0,5288

0,6085

-8,7412

14,1817

Выборочная модель множественной линейной регрессии может быть записана в виде:

.

EXCEL автоматически рассчитал коэффициенты множественной корреляции (множественный R) и детерминации (R-квадрат), а также скорректированный коэффициент детерминации (нормированный R-квадрат)

Мы получили следующие показатели тесноты связи: R2=0,998 , R=0,99.

Между коэффициентом детерминации и скорректированным коэффициентом существуют незначительные различия, значит можно использовать R2 и R для оценки тесноты связи. Множественный коэффициент корреляции (R = 0,99) свидетельствует о прямой связи между факторами и результатом, множественный коэффициент детерминации показывает, что 99,8% вариации ВВП связано с включенными в модель факторами.

Дадим оценку значимости уравнения в целом, условного начала и коэффициентов чистой регрессии.

Оценка значимости уравнения в целом проводится на основе дисперсионного анализа.

Предположим, что уравнение не значимо для генеральной совокупности (Н0) в качестве альтернативной гипотезы выдвинем предположение о значимости уравнения (НА). Проверим эти гипотезы на 5% уровне значимости. В качестве критерия выберем критерий F-Фишера, его фактическое значение равно 672,77. Сравним его с критическим значением , которое можно найти, используя встроенную функцию FРАСПОБР().

В нашем случае: =FРАСПОБР(0,05;9;10)=3,02.

Поскольку фактическое значение превышает критическое, принимаем гипотезу о значимости уравнения в целом, следовательно, уравнение в целом значимо,