Дисперсионный анализ
df
SS
MS
F
Значимость F
Регрессия
9
57879,05
6431,005
672,7762
1,04E-12
Остаток
10
95,58908
9,558908
Итого
19
57974,64
|
Коэффициенты |
Стандартная ошибка |
t-статистика |
P-Значение |
Нижние 95% |
Верхние 95% |
|
Y-пересечение |
165,9428 |
211,6086 |
0,7842 |
0,4511 |
-305,5506 |
637,4362 |
|
x5 |
-0,0649 |
0,0381 |
-1,7027 |
0,1195 |
-0,1498 |
0,0200 |
|
x8 |
0,0003 |
0,0008 |
0,3936 |
0,7021 |
-0,0015 |
0,0022 |
|
x9 |
-0,2459 |
0,5524 |
-0,4451 |
0,6657 |
-1,4767 |
0,9849 |
|
x13 |
1,2764 |
0,5491 |
2,3247 |
0,0424 |
0,0530 |
2,4997 |
|
x14 |
-0,8366 |
0,5861 |
-1,4275 |
0,1839 |
-2,1424 |
0,4692 |
|
x15 |
5,5956 |
3,7738 |
1,4828 |
0,1690 |
-2,8128 |
14,0041 |
|
x16 |
10,2395 |
9,9726 |
1,0268 |
0,3287 |
-11,9809 |
32,4598 |
|
x17 |
0,0674 |
0,0649 |
1,0384 |
0,3236 |
-0,0772 |
0,2121 |
|
x19 |
2,7203 |
5,1439 |
0,5288 |
0,6085 |
-8,7412 |
14,1817 |
Выборочная модель множественной линейной регрессии может быть записана в виде:
.
EXCEL автоматически рассчитал коэффициенты множественной корреляции (множественный R) и детерминации (R-квадрат), а также скорректированный коэффициент детерминации (нормированный R-квадрат)
Мы получили следующие показатели тесноты связи: R2=0,998 , R=0,99.
Между коэффициентом детерминации и скорректированным коэффициентом существуют незначительные различия, значит можно использовать R2 и R для оценки тесноты связи. Множественный коэффициент корреляции (R = 0,99) свидетельствует о прямой связи между факторами и результатом, множественный коэффициент детерминации показывает, что 99,8% вариации ВВП связано с включенными в модель факторами.
Дадим оценку значимости уравнения в целом, условного начала и коэффициентов чистой регрессии.
Оценка значимости уравнения в целом проводится на основе дисперсионного анализа.
Предположим, что уравнение не значимо для генеральной совокупности (Н0) в качестве альтернативной гипотезы выдвинем предположение о значимости уравнения (НА). Проверим эти гипотезы на 5% уровне значимости. В качестве критерия выберем критерий F-Фишера, его фактическое значение равно 672,77. Сравним его с критическим значением , которое можно найти, используя встроенную функцию FРАСПОБР().
В нашем случае: =FРАСПОБР(0,05;9;10)=3,02.
Поскольку фактическое значение превышает критическое, принимаем гипотезу о значимости уравнения в целом, следовательно, уравнение в целом значимо,
- 1. ВВЕДЕНИЕ
- 2. РАСЧЕТНАЯ ЧАСТЬ
- 2.1 Исходные данные для проведения анализа
- 2.2 Базовый анализ данных
- 2.3 Анализ временных рядов
- 2.4 Корреляционный анализ
- 2.5 Регрессионный анализ
- Дисперсионный анализ
- 2.6 Дисперсионный анализ
- Дисперсионный анализ
- 2.7 Факторный анализ
- 2.8 Кластерный анализ
- 3. ЗАКЛЮЧЕНИЕ