Постановка задачі
Методи лінійного програмування - чисельні методи вирішення оптимізаційних задач, що зводяться до формальних моделей лінійного програмування[1].
Як відомо, будь-яке завдання лінійного програмування може бути приведене до канонічної моделі мінімізації лінійної цільової функції з лінійними обмеженнями типу рівності. Оскільки число змінних в завданні лінійного програмування більше числа обмежень (), то можна отримати рішення, прирівнявши нулю () змінних, які називаються вільними. Решта m змінних, які називаються базисними, можна легко визначити з системи обмежень звичайними методами лінійної алгебри. Якщо рішення існує, то воно називається базисним. Якщо задача лінійного програмування має оптимальні рішення, то хоча б один із них є базисним.
Приведені міркування означають, що при пошуку оптимального рішення задачі лінійного програмування досить обмежитися перебором базисних допустимих рішень. Те, що не всі базисні рішення є допустимими, істотно проблеми не міняє, оскільки щоб оцінити допустимість базисного рішення, його необхідно отримати.
В загальному постановка задачі має вигляд:
Нехай маємо деякі змінні і функцію цих змінних, яка називається цільовою функцією. Потрібно найти екстремум (максимум чи мінімум) цільової функціїпри умові,що змінні належать деякій області :
(1.1.1)
В залежності від виду функції і області G розрізняють розділи математичного програмування: квадратичне програмування, випукле і ін.
Лінійне програмування характеризується тим, що функція і лінійною функцією змінних і область G визначається системою лінійних рівнянь чи нерівностей.
- Вступ
- Розділ 1 Теоритичні відомості
- Багатокритеріальність, існуючі методи розвязку задач лінійного програмування
- Постановка задачі
- Графічний метод
- Симплекс-метод
- Двоїстий симплекс-метод
- Транспортна задача
- Розділ 2. Вибір методу і його опис
- Вибір методу розвязання багатокритеріальної задачі лінійного програмування. Симплекс метод
- Розділ 3. Постановка і вирішення задачі
- Висновки
- 2. Опорні плани задачі лінійного програмування
- 3. Постановка задачі лінійного програмування в стандартній формі.
- Постановка задачі дробово-лінійного програмування.
- Тема 4.1. Задачі лінійного програмування
- 10. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- 29. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 1.1.8.2. Методи лінійного програмування
- 31. Приведення задачі дробово-лінійного програмування до оптимізаційної задачі лінійного програмування.
- 3.5. Цілочислові задачі лінійного програмування.