logo search
Графический метод и симплекс-метод решения задач линейного программирования

2.1 Идея симплекс-метода

Рассмотрим универсальный метод решения канонической задачи линейного программирования

, , ,

с n переменными и m ограничениями-равенствами, известный как симплекс-метод. 

Множество планов канонической задачи - выпуклое многогранное множество, имеющее конечное число угловых точек. И если эта задача имеет оптимальное решение, то оно достигается хотя бы в одной угловой точке.

С любой угловой точкой связан базисный план задачи, в котором переменных равны нулю, а оставшимся переменным соответствуют линейно независимые столбцы матрицы условий . Эти линейно независимые столбцы образуют невырожденную базисную матрицу .

Перебор всех угловых точек сопряжен с большими вычислительными затратами и поэтому не эффективен. В 1947 году Дж. Данциг предложил упорядоченную процедуру перебора угловых точек, при которой для нахождения оптимального решения достаточно исследовать лишь небольшую их часть. Эта процедура называется симплекс-методом.

Дж. Данциг предложил при переходе от одной крайней точки к другой заменять в базисной матрице всего один вектор. Это означает, что при таком переходе мы должны одну из базисных переменных исключить - сделать ее небазисной (равной нулю), а на ее место ввести новую переменную из числа небазисных (нулевых) - сделать ее базисной (положительной).

Оказывается, геометрически такая замена приводит к переходу от одной угловой точки к смежной (соседней), связанной с предыдущей точкой общим ребром.

Из всех соседних точек выбирается та, в которой целевая функция возрастает более всего. Поскольку число угловых точек конечно, через конечное число переходов будет найдена вершина с наибольшим значением целевой функции, либо будет установлена неограниченность целевой функции на неограниченном множестве планов.

Общая схема симплекс-метода состоит из следующих основных шагов.

· шаг 0. Определение начального базиса  и соответствующей ему начальной угловой точки (базисного плана) .

· шаг 1. Проверка текущего базисного плана на оптимальность. Если критерий оптимальности выполнен, то план оптимален и решение закончено. Иначе переход на шаг 2.

· шаг 2. Нахождение переменной, вводимой в состав базисных. (Из условия увеличения целевой функции).

· шаг 3. Нахождение переменной, исключаемой из состава базисных переменных (Из условия сохранения ограничений задачи).

· шаг 4. Нахождение координат нового базисного плана (смежной угловой точки). Переход на шаг 1.

Повторяющиеся шаги 1-4 образуют одну итерацию симплекс-метода.

Из этой схемы следует, что во-первых, для начала работы симплекс-метода надо иметь какую-то угловую точку - начальный базисный план, а во-вторых, надо уметь исследовать текущую угловую точку на оптимальность, не вычисляя всех смежных вершин. Эти проблемы легко решаются, если каноническая задача ЛП имеет некий специальный вид.

Определение. Будем говорить, что каноническая задача ЛП имеет "предпочтительный вид", если

1. правые части уравнений , .

2. матрица условий содержит единичную подматрицу размера 

.

Другими словами, в любом уравнении есть переменная с коэффициентом равным единице, отсутствующая в остальных уравнениях. Первое условие не является обременительным, так как в случае отрицательной правой части некоторого уравнения, достаточно умножить его на (-1). В задаче предпочтительного вида начальный базисный план находится очень просто.

Пример 2.1.

Матрица условий A и вектор правых частей ограничений b имеют вид 

, ,

а целевой вектор с = (1, -3, 0, 4, 2).

Сразу очевидна одна базисная матрица: с единичными векторами условий. 

Следовательно, выбирая в качестве базисных переменных x1, x3, x5, и полагая в системе уравнений x2 = x4 = 0 (небазисные переменные), немедленно находим x1 =10, x3 = 20, x5 = 8, так что начальный базисный план x0 = (10, 0, 20, 0, 8). Видим, что значения базисных переменных равны правым частям ограничений. Из этого понятно требование положительности правых частей bi.

В дальнейшем, базисные переменные будем объединять в вектор xБ.

Таким образом, в канонической задаче предпочтительного вида в качестве начальной базисной матрицы берется единичная подматрица AБ = E, а соответствующие ей базисные переменные равны правым частям ограничений: 

xБ = b.

Для базисного плана такого вида может быть сформулирован достаточно простой для проверки критерий оптимальности. Введем величины

?j = < сБ, Aj > - cj, j = 1,...,n, (2.1)

где сБ - вектор из коэффициентов целевой функции при базисных переменных xБ, Aj - j-й столбец матрицы условий, cj - j-й коэффициент целевой функции. Разности ?j называются симплексными разностями или симплексными оценками.

Критерий оптимальности базисного плана. Если для базисного плана с единичной базисной матрицей все симплексные оценки неотрицательны, то этот план оптимален.

Применим данный критерий для проверки на оптимальность базисного плана x0 = (10, 0, 20, 0, 8) из примера 2.1.

Так как в этом плане вектор базисных переменных xБ =(x1, x3, x5), то сБ = (c1, c3, c5) = (1, 0, 2).

.

Следовательно,

?1 = < сБ, A1 > - c1 = 1•1 + 0•0 + 2•0 - 1= 0,

?2 = < сБ, A2 > - c2 = 1•3 + 0•1 + 2•2 - (-3) = 10,

?3 = < сБ, A3 > - c3 = 1•0 + 0•1 + 2•0 - 0= 0,

?4 = < сБ, A4 > - c4 = 1•(-1) + 0•5 + 2•1 - 4= -3,

?5 = < сБ, A5 > - c5 = 1•0 + 0•0 + 2•1 - 2= 0.

Так как оценка ?4 < 0, то базисный план x0 не оптимален. Заметим, что симплексные оценки, соответствующие базисным переменным, всегда равны нулю, так что достаточно проверять только небазисные оценки.