logo search
СПР Олонина

Оценка производственных функций с использованием методов корреляционно-регрессионного анализа

Основными задачами корреляционного анализа являются определение наличия связи между отобранными признаками, установление ее направления и количественная оценка тесноты связи. Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующимися признаками, определению неизвестных причинных связей и оценке факторов, оказывающих наибольшее влияние на результативный признак.

Задачами регрессионного анализа являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчетных значений зависимой переменной (функции регрессии).

Решение всех названных задач приводит к необходимости комплексного использования этих методов.

Необходимые условия применения корреляционного анализа.

1. Наличие достаточно большого количества наблюдений о величине исследуемых факторных и результативных показателей (в динамике или за текущий год по совокупности однородных объектов).

2. Исследуемые факторы должны иметь количественное измерение и отражение в тех или иных источниках информации.

Применение корреляционно-регрессионного анализа позволяет решать следующие задачи:

  1. выбор спецификации модели, т. е. формулировки вида модели, исходя из соответствующей теории связи между переменными;

  2. из всех факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы;

  3. парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. Поэтому необходимо знать, какие остальные факторы предполагаются неизменными, так как в дальнейшем анализе их придется учесть в модели и от простой регрессии перейти к множественной;

  4. исследовать, как изменение одного признака меняет вариацию другого.

Предпосылки корреляционно-регрессионного анализа:

1) уравнение парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений;

2) в уравнении регрессии корреляционная связь признаков представляется в виде функциональной связи, выраженной соответствующей математической функцией;

3) случайная величина Е включает влияние неучтенных в модели факторов, случайных ошибок и особенностей измерения;

4) определенному значению признака-аргумента отвечает некоторое распределение признака функции.

Недостатки анализа:

1) невключение ряда объясняющих переменных:

  1. целенаправленный отказ от других факторов;

  2. невозможность определения, измерения определенных величин (психологические факторы);

  3. недостаточный профессионализм исследователя моделируемого;

2) агрегирование переменных (в результате агрегирования теряется часть информации);

3) неправильное определение структуры модели;

4) использование временной информации (изменив временной интервал, можно получить другие результаты регрессии);

5) ошибки спецификации:

  1. неправильный выбор той или иной математической функции;

  2. недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии, вместо множественной);

6) ошибки выборки, так как исследователь чаще имеет дело с выборочными данными при установлении закономерной связи между признаками. Ошибки выборки возникают и в силу неоднородности данных в исходной статистической совокупности, что бывает при изучении экономических процессов;

7) ошибки измерения представляют наибольшую опасность. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки - увеличивая объем исходных данных, то ошибки измерения сводят на нет все усилия по количественной оценке связи между признаками.