logo search
АРТ-моделирование на фондовом рынке

§ 1. Эконометрический подход к моделированию фондового рынка:

от общего к частному

Для выявления экономических взаимосвязей (в частности, зависимостей на фондовом рынке) широко применяется аппарат экономико-статистического моделирования. Необходимость разработки специального математического аппарата для анализа экономических процессов обусловлена спецификой задач, особенностью экономической информации, а возможность применения статистических методов в качестве инструмента анализа - тем, что проявление закономерностей в экономике носит, как правило, статистический характер. Применительно к экономическим и финансовым процессам, ста-тисти-ческие методы принято называть эконо-метрическими.

Рассмотрим основные эконометрические приемы, необходимые для проведения нашего исследования в области оценки стоимости акций.

Проведение эконометрического исследования предполагает осуществление процедур корреляционно-регрессионного анализа Арженовский С. В., Федосова О.Н. Эконометрика: Учебное пособие/ Рост. гос. экон. унив. - Ростов н/Д, - 2002 - с. 69-94.

Корреляционный анализ выборочных данных позволяет обнаружить и измерить тесноту статистической связи между переменными, которые рассматриваются как случайные величины. В целях анализа корреляции случайных величин на основе выборки, как правило, определяют выборочные коэффициенты корреляции и проверяют статистические гипотезы о значимости корреляционной связи.

В случае взаимосвязи нескольких случайных величин x 1,x 2, …, x p анализу подвергают корреляционную матрицу. В этом случае выборка представляет из себя матрицу наблюдений Х = ||х i j||, i = 1, …, n, j = 1, …, p, где n - объем выборки, p - число рассматриваемых случайных величин, i - индекс наблюдения в выборке, j - индекс переменной, величина х i j соответствует i-му наблюдению над j-й переменной.

Элементами корреляционной матрицы выступают линейные парные коэффициенты корреляции, вычисляемые между переменными выборки.

Линейный парный коэффициент корреляции является мерой линейной статистической связи двух случайных величин. Выборочный коэффициент парной корреляции определяют как

, (2)

где i - индекс наблюдения в выборке, i = 1, …, n, n - объем выборки, x i, y i, i = 1, …, n - наблюдения над случайными величинами X и Y соответственно.

Парный коэффициент корреляции характеризует степень приближения статистической связи к линейной. Он отражает взаимосвязь случайных величин и не зависит от того, какая из величин X и Y является причиной, а какая - следствием.

Коэффициент корреляции обладает следующими свойствами:

1). Коэффициент не имеет размерности, следовательно, сопоставим для различных статистических показателей;

2). Величина коэффициента корреляции лежит в пределах от -1 до +1. Значение |сx,y | = 1 свидетельствует о том, что между переменными существует функциональная зависимость, т. е. все наблюдения лежат на одной прямой (чем ближе |сx,y| к 1, тем ближе эта связь к функциональной); если сx,y равен или приближается к нулю, это указывает на отсутствие линейной связи между X и Y, хотя допустимо существование нелинейной зависимости;

3). Если значение сx,y > 0 (коэффициент корреляции положителен), то взаимосвязь величин прямая: с ростом Х увеличивается Y. Отрицательный коэффициент корреляции говорит об обратной взаимосвязи.

Наличие связи между X и Y может быть обнаружено, если: а) Х есть причина Y; б) Y есть причина Х; в) если Х и Y совместно зависимые величины; г) если Х и Y являются следствием некоторой общей для них причины.

В практике статистического анализа имеют место случаи, когда корреляционный анализ обнаруживает существование достаточно сильной зависимости признаков, в действительности не имеющих причинно-следственной связи между собой, - такие корреляции называют ложными.

Оценка коэффициента корреляции, определенная по выборке, является случайной величиной, поэтому необходимо проверить гипотезу о значимости, т. е. проверить предположение, существенно ли коэффициент корреляции отличается от нуля, или это случайное отклонение, связанное с выборкой. Если сx,y - коэффициент корреляции в генеральной совокупности, то нулевая гипотеза может быть как:

,

и альтернативная ей

.

В качестве критерия применяют статистику, которая для выборки (х, y) из нормальной генеральной совокупности будет иметь t-распределение. Ее вычисляют по формуле:

. (3)

Расчетное значение критерия сопоставляют с табличным значением распределения Стьюдента t б, н, где н - число степеней свободы, н = n - 2, б - уровень значимости. Если получают t > t б, н, то нулевая гипотеза отвергается и можно утверждать, что коэффициент корреляции значим. В случае t < t б, н нет оснований отвергать нулевую гипотезу и следует сделать заключение о том, что коэффициент корреляции незначим Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики - Учебник для вузов М.: ЮНИТИ. 1998, с. 771-782.

Прикладные цели регрессионного анализа в области экономики заключаются в следующем:

1). Установить наличие статистически значимой регрессионной связи между зависимой и объясняющими переменными;

2). Определить конкретный аналитический вид связи;

3). Спрогнозировать и восстановить значения исследуемого результирующего показателя по известным значениям объясняющих переменных.

Таким образом, построение эконометрической модели является основой любого эконометрического исследования. Она выступает в качестве средства анализа и прогнозирования в различных сферах: финансовой, производственной, инвестиционной, и применяется для исследования объектов самого разного уровня - от отдельных предприятий, отраслей, регионов до страны в целом.

Регрессионная модель представляет собой один из основных типов эконометрических моделей. Она отражает зависимость случайного результирующего показателя y от одной или нескольких детерминированных объясняющих переменных Х = (x1, x2, …, xp).

Выявление регрессионной зависимости осуществляется на основе анализа данных о наблюдениях за экономическими процессами, которые образуют выборки из генеральной совокупности. При построении эконометрических моделей желательно, чтобы все выборочные распределения используемых показателей соответствовали нормальному закону распределения.

Математическую модель регрессионной зависимости можно записать следующим образом:

, (4)

где f(X) представляет собой детерминированную составляющую модели, в которой Х выступает как вектор объясняющих переменных Х=(х 1, х 2, ... , х p);

е - остаточная компонента (возмущение модели).

Детерминированная составляющая модели f(X) выражает влияние существенных факторов на зависимый показатель y и описывает условное математическое ожидание:

. (5)

Случайная составляющая отражает суммарное влияние всех несущественных факторов.

В данном случае нас интересует множественная линейная регрессия стоимости ценных бумаг от различных экономических факторов.

Множественной регрессией называют модель, которая включает несколько предсказывающих или объясняющих переменных. Она полнее объясняет поведение зависимой переменной и позволяет сопоставить влияние включенных в уравнение регрессии факторов.

Если регрессия - линейная, то это означает, что факторные признаки линейно влияют на поведение исследуемого показателя.

В общем виде модель множественной линейной регрессии, включающая p объясняющих переменных х 1, ..., х p имеет вид:

, (6)

где в 0, в 1, ..., в p - неизвестные оцениваемые параметры регрессии;

х 1, х 2, …, х p - влияющие факторы; е - остаточная компонента.

Задача оценивания в данном случае заключается в том, чтобы с помощью метода наименьших квадратов найти такие оценки b 0, b 1, …,b p, которые минимизировали бы квадраты отклонений наблюдаемых значений зависимой переменной yi от расчетных значений, вычисленных с помощью уравнения регрессии.

Функция, значение которой минимизируют с помощью МНК:

. (7)

Оценки параметров регрессии, получаемые по методу наименьших квадратов, обладают статистическими свойствами несмещенности, состоятельности и эффективности.

Свойство несмещенности оценок заключается в том, что оценки параметров b j, найденные с помощью линейного МНК, не содержат систематических ошибок при оценивании. Свойство состоятельности означает, что при росте объема выборки до бесконечности с вероятностью, близкой к единице, можно утверждать, что оценки параметров b j сходятся к оцениваемому параметру в j. Наконец, МНК-оценки являются эффективными, если они характеризуются наименьшей дисперсией в классе линейных оценок.

Чтобы получаемые оценки параметров обладали данными свойствами, необходимо выполнение предпосылок (условий) регрессионного анализа Гаусса-Маркова Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики - Учебник для вузов М.: ЮНИТИ. 1998, с. 778-781:

1. Е (е) = 0, т. е. математическое ожидание остатков равно нулю. Невыполнение данного условия приводит к тому, что оценки параметров теряют свойство несмещенности.

2. Условие гетероскедастичности, или одинакового разброса:

D (е) = у2, т. е. дисперсия возмущений в модели распределена равномерно, ее величина постоянна (дисперсия не может увеличиваться с ростом числа наблюдений). Выполнение данного условия позволяет получать эффективные оценки параметров b j.

3. Условие отсутствия автокорреляции: cov (е i, е j ) = 0, i, j = 1, …, n, т. е. отдельные наблюдения остаточной компоненты некоррелированы. Оценки метода МНК модели с автокорреляцией случайной составляющей теряют эффективность. Применение МНК в данном случае приводит к существенной недооценке параметров, в связи с чем теряют свое значение процедуры проверки гипотез и обоснованность предсказаний.

4. cov (е, x j ) = 0, j = 1, …, p, т. е. объясняющие переменные не коррелируют с возмущениями модели.

5. е N (0, у2), т. е. случайная составляющая в модели нормально распределена. Нормальность распределения остаточной компоненты гарантирует, что оценки метода МНК будут иметь нормальное распределение.

Качество построенного регрессионного уравнения, выступающего в качестве результата проведенного исследования, может быть оценено с помощью ряда показателей, которые можно отнести к группе абсолютных либо относительных.

Среди абсолютных показателей качества наиболее важную роль играют следующие:

1). Средняя ошибка аппроксимации:

(8)

Допустимый уровень ошибки - до 10 %.

2). Оценки дисперсий.

- Оценка общей дисперсии:

(9)

Общая дисперсия характеризует разброс значений зависимого признака относительно среднего уровня.

- Оценка объясненной дисперсии:

(10)

Объясненная дисперсия характеризует вариацию зависимого признака, объясненную построенным уравнением регрессии.

- Оценка остаточной дисперсии:

(11)

Остаточная дисперсия отражает разброс значений относительно линии регрессии (модельных значений) и может служить показателем точности воспроизведения значений зависимой переменной. В случае высокой остаточной дисперсии точность прогнозов результирующего показателя будет невелика и практическое использование построенного уравнения малоэффективным. Напротив, чем меньше остаточная дисперсия, тем больше уверенности в том, что уравнение регрессии подобрано верно.

Большое значение остаточной дисперсии может быть обусловлено неверным выбором функции или отсутствием статистической взаимосвязи между зависимой и объясняющими переменными, включенными в уравнение регрессии.

3). На практике часто используют величину стандартного отклонения от линии регрессии, называемую также стандартной ошибкой регрессии или стандартной ошибкой оценивания:

(12)

Рассмотренные показатели качества линейной регрессионной модели являются абсолютными, поскольку размер дисперсии напрямую зависит от показателя y.

Среди относительных показателей качества регрессии основным является коэффициент детерминации.

Коэффициент детерминации вычисляют как отношение сумм квадратов:

(13) или . (14)

Коэффициент детерминации показывает долю объясненной уравнением регрессии дисперсии зависимой переменной и выражается в долях.

Коэффициент детерминации изменяется от 0 до 1. Высокое значение R2 говорит о том, что включенные в уравнение регрессии факторы в основном объясняют вариацию значений зависимого признака. Если же значение R2 невелико, то можно сделать вывод о том, что факторы, оказывающие существенное влияние на результирующий показатель, в уравнение регрессии не вошли.

Однако существует ряд ограничений, сужающих возможности применения данного показателя для анализа.

Прежде всего, коэффициент детерминации позволяет проводить сравнение различных линейных по параметрам регрессионных уравнений для одной и той же зависимой переменной.

Второе ограничение связано с количеством объясняющих переменных в модели. Сопоставимые уравнения регрессии зависимой переменной должны включать одинаковое число факторов и могут отличаться лишь составом независимых переменных. Ограничение по количеству объясняющих переменных обусловлено тем, что R2 является неубывающей функцией от числа включенных в регрессию факторов. Поэтому наряду с традиционным часто используют скорректированный коэффициент детерминации, позволяющий проводить сравнение линейных регрессионных уравнений с разным подмножеством факторов:

, (15)

где R2 - базовый коэффициент детерминации; n - объем выборки; q - число факторов в факторном наборе.

Еще одно требование связано с наличием свободного члена. Константа должна входить или отсутствовать одновременно во всех сравниваемых уравнениях.

Квадратный корень из R2 для линейной модели

(16)

представляет собой коэффициент множественной корреляции и характеризует тесноту связи совокупности факторов, включенных в уравнение регрессии, с исследуемым показателем.

Кроме того, дополнять оценку качества регрессионного уравнения следует проверкой значимости как параметров регрессии, так и самого регрессионного уравнения.

1). Проверка значимости параметров позволяет установить существенность влияния отдельных факторов на зависимую переменную.

Проверка значимости параметра предполагает проведение процедуры проверки гипотезы о том, что фактор x j не оказывает существенного влияния на зависимую переменную. Нулевую гипотезу относительно параметра модели формулируют следующим образом:

.

Альтернативная ей гипотеза утверждает, что в j значимо отличается от нуля:

.

Статистика для проверки сформулированной гипотезы принимает вид:

. (17)

Если верна нулевая гипотеза, то статистика (17) имеет распределение Стьюдента. Расчетное значение t-статистики сравнивают с квантилью t-распределения t б, н, которая имеет параметры: н - число степеней свободы,

н = n-p-1, p - число объясняющих переменных в уравнении регрессии; б - уровень значимости.

Величина б определяет надежность статистических выводов. Чем выше требования к надежности результатов, тем меньше должна быть величина б.

Если расчетное значение t-статистики попадает в критическую для проверяемой гипотезы область | t | > t б, н, то параметр в j значим, следовательно, фактор x j оказывает существенный вклад в вариацию зависимого признака. В противном случае, если | t | < t б, н, то влияние фактора несущественно и он может быть исключен из уравнения регрессии.

2). Целью поверки гипотезы о значимости уравнения регрессии является определение существенности влияния на зависимую переменную всех или хотя бы некоторых независимых переменных, включенных в регрессионную модель.

Нулевая гипотеза состоит в том, что все переменные x 1, x 2, …, x p не оказывают существенного влияния на зависимую переменную:

.

Альтернативная гипотеза утверждает, что, как минимум, одна из объясняющих переменных оказывает существенное влияние на объясняемую переменную и должна быть включена в регрессионную модель. Гипотеза может быть записана следующим образом:

.

Для проверки нулевой гипотезы используют F-критерий:

. (18)

Если верна нулевая гипотеза, то (18) имеет распределение с числом степеней свободы числителя н 1 = p и числом степеней свободы знаменателя н 2 = n - p - 1. Решение о значимости F-критерия принимают, задав некоторый уровень значимости б и определив соответствующую параметрам б, н 1 и н 2 квантиль распределения F б, н 1, н 2. Если F < F б, н 1, н 2, то считают, что нет оснований отвергать нулевую гипотезу, ни одна из включенных в уравнение регрессии переменных не оказывает существенного влияния на y. Напротив, когда F > F б, н 1, н 2, то делают заключение, что выборочные данные не подтверждают основную гипотезу, все или некоторые объясняющие переменные существенно влияют на зависимую переменную.

Все рассмотренные показатели качества регрессионного уравнения определяют дальнейшее поведение исследователя: будет он пересматривать построенную модель, внося коррективы в состав факторного набора, или же остановится на достигнутых результатах Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики - Учебник для вузов М.: ЮНИТИ. 1998, с. 780-792.

§ 2. Теоретическая и практическая реализация АРТ-

моделирования

Как уже было отмечено, построение модели арбитражного ценообразования, используемой для определения стоимости ценных бумаг, сопряжено с субъективным отношением инвестора к влияющим факторам: какие факторы выбрать, каким должен быть критерий включения фактора в модель, - все эти проблемы инвестор решает самостоятельно.

А потому для построения модели арбитражного ценообразования воспользуемся универсальным алгоритмом, предложенным А. А. Шабалиным Шабалин А. А. Алгоритм построения модели арбитражного ценообразования. http://www.bupr.ru/?litra/finmen/finmen_10.htm, который, на мой взгляд, позволяет наиболее полно сохранить все преимущества модели и учитывает ее недостатки.